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 

 Abstract— In this chapter we study the Magneto 

hydrodynamics (MHD) free convective heat and mass transfer 

flow past a vertical plate with heat source taking viscous and 

Darcy resistance terms into account and the constant 

permeability of the medium numerically. The governing 

nonlinear partial differential equations are solved numerically 

by finite difference method. The results are obtained for 

velocity, temperature and concentration profiles. The 

numerical results are presented graphically for different 

values of the parameters entering into the problem. Finally, the 

numerical values of skin friction are presented in tabular form. 

 

Index Terms— Heat and Mass transfer, free convection, 

MHD, Porous medium, vertical plate, Finite difference method 

 

I. INTRODUCTION 

The convection problem in a porous medium has 

important applications in geothermal reservoirs and 

geothermal extractions. The process of heat and mass 

transfer is encountered in aeronautics, fluid fuel nuclear 

reactor, chemical process industries and many engineering 

applications in which the fluid is the working medium. The 

wide range of technological and industrial applications has 

stimulated considerable amount of interest in the study of 

heat and mass transfer in convection flows. Free convective 

flow past a vertical plate has been studied extensive by 

Ostrach (1953). Siegel (1958) investigated the transient free 

convection form a vertical flat plate. Cheng and Lau (1977) 

and Cheng and Teckchandani (1977) obtained numerical 

solutions for the convective flow in a porous medium 

bounded by two isothermal parallel plates in the presence of 

the withdrawal of the fluid. In all the above mentioned 

studies, the effect of porosity, permeability and the thermal 

resistance of the medium is ignored or treated as constant. 

However, porosity measurements by Benenati and 

Broselow (1962) show that porosity is not constant but varies 

from the surface of the plate to its interior to which as a result 

permeability also varies. In case of unsteady free convective 

flows, Soundalgekar (1972) studied the effects of viscous 

dissipation on the flow past an infinite vertical porous plate. 

The combined effect of buoyancy forces from thermal and 

mass diffusion on forced convection was studied by Chen et 

al. (1980). The free convection on a horizontal plate in a 

saturated porous medium with prescribed heat transfer 
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coefficient was studied by Ramanaiah and Malarvizhi 

(1991). Bejan and Khair (1985) have investigated the 

vertical free convective boundary layer flow embedded in a 

porous medium resulting from the combined heat and mass 

transfer. Lin and Wu (1995) analyzed the problem of 

simultaneous heat and mass transfer with the entire range of 

buoyancy ratio for most practical and chemical specieds in 

dilute and aqueous solutions. Rushi kumar and Nagarajan 

(2007) studied the mass transfer effect of MHD free 

convection flow of an in compressible viscous dissipative 

fluid past an infinite vertical plate. Mass transfer effects on 

free convection flow of an incompressible viscous dissipative 

fluid have been studied by Manohar and Nagarajan (2001). 

Recently, Sivaiah et al. (2009) have discussed on heat and 

mass transfer effects on MHD free convection flow past a 

vertical porous plate. 

 Therefore, the aim of the present chapter to study the MHD 

free convective heat and mass transfer flow of viscous 

incompressible fluid through a porous medium confined in a 

porous plate with heat source. The velocity, temperature, 

concentration profiles and the skin friction have been 

analyzed for variations in the different parameters involved 

in the problem. 

II.  MATHEMATICAL FORMULATION: 

Let us consider the two dimensional free convection 

and mass transfer flow of an in compressible viscous 

Newtonian fluid past an infinite vertical porous plate with 

heat source under the following assumption: 

1. The plate temperature is oscillating with 

time, about a constant non-zero mean 

value. 

2. Viscous and Darcy’s resistance terms are 

taken into account with constant 

permeability of the medium. 

3. Boussinesq’s approximation is valid 

4. The suction velocity normal to the plate is 

a function of time and can be written as 

0U    

A system of rectangular coordinates 

* * *( , , )O x y z is taken such that 
* 0y  on the plate and 

*z axis is along its leading edge. All the fluid properties are 

considered constant expect that the influence of the density 

variation with temperature is considered. The influence of 

the density variation in other terms of the momentum and the 

energy equation and the variation of the expansion 

coefficient with temperature is considered negligible. This is 

the well known Boussinesq approximation. 

MHD Free Convection Flow past a Vertical Porous 

Plate with Heat Source: A Finite Difference 

Approach 

Shailendra Kumar Gautam and AK Singh 



 

MHD Free Convection Flow past a Vertical Porous Plate with Heat Source: A Finite Difference Approach 

 

www.eshancollege.com                                                                 338                                                                     www.erpublication.org 

We regard the porous medium as an assemblage of 

small identical and spherical particles of fixed space. Under 

these conditions, the problem is governed by the following 

system of equations: 
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Where 
* *( , )u v are the velocity components, 

* *( , )T C are the temperature and concentration components and   

is the density, 

p

k

C



 is the thermal diffusivity and 

*S is the heat source parameter. 

The boundary conditions for the velocity and temperature and concentration fields are: 
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Let us introduce the non-dimensional variables, 

* 2 ** * * * *
0 0

* * * *
0

( ) ( )
, , , ,

( ) ( )w w

t U y Uu T T T T
u t y

u T T C C


 
 

 

 
   

 

2 * 2
0 0

* 2 2
0 0

, ,Pr , ,
pCU K B S

K M Sc S
k DU U

   

 


      

* * * *

2 * *
0

( ) ( )
,

( )

w w

w

g T T C C
Gr N

U T T

   



 
 


 

Where Pr is the Prandtl number, rG is the Grashof number, N  is the buoyancy ratio, Sc is the Schmidt number, M is 

the magnetic parameter, D is the mass diffusivity, K is the permeability parameter,  is the thermal expansion coefficient, 

 is the concentration expansion coefficient and S is the heat source parameter. Other physical variables have their usual 

meanings. 

The governing equations reduce to  
2
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And the corresponding boundary conditions are 

0, 1, 1 ; 0

0, 0, 0 ;

u C y

u T C y

   

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       (2.9) 

III. SOLUTION OF THE PROBLEM: 

The governing Equations (2.6-2.8) are to be solved 

under the initial and boundary conditions of equation (2.9). 

The finite difference technique is applied to solve these 

equations. 

The equivalent finite difference scheme of equations 

(2.6-2.8) are given by 
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Here index i  refers to y and j  to time t . The mesh is divided by taking 0.1y   

From the initial conditions in Equation (2.9), we have following equivalent 
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The boundary conditions from equation (3.4) are expressed 

in finite difference form are as follows 
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Here, infinity is taken as 4.1y  . First, the velocity at the 

end of time step namely ( , 1), 1 10u i j i to   is 

computed form equation (2.1) and temperature  

( , 1), 1 10i j i to    from equation (2.2) and 

concentration ( , 1), 1 10C i j i to   from equation 

(2.3). The procedure is repeated until 1( . . 100)t i e j  . 

During computation, t was chosen to be 0.00125 . 

These computations are carried out for different values of 

parameters ,Pr, , , , ,Gr Sc M N S t and K . To judge the 

accuracy of the convergence of finite difference scheme, the 

same program was run with smaller values of t  i.e. 

0.0009,0.001t   and no significant change was 

observed. Hence, we conclude that the difference scheme is 

stable and convergent. 

 

IV. RESULTS AND DISCUSSION: 

Numerical calculations have been carried out for 

dimensionless velocity, temperature and concentration 

distributions for different values of parameters and are 

displayed in figures (1) to (12). 

Figures (1) to (8) represent the velocity profiles for different 

parameters. Figure (1) shows the variation of velocity u with 

magnetic parameter M . It is observed that the velocity 

decreases as M increases. From Figure (2), it is observed 

that the velocity increases as the Grashoff number 

Gr increase. The variation of u  with N  is shown in 

Figure (3). It is noticed that increase in N  leads to increase 

in velocity. The velocity profile for time variable t is shown 

in figure (4). It is clear that an increase in t leads to an 

increase in  u . Figure (5) shows that an increase in 

permeability parameter K causes an increase in velocity. 

From Figure (6) shows the variation of velocity u with 

Prandtl number Pr . It is observed that the velocity decreases 

as Pr  increases. The velocity profile for Schmdit number 

Sc is shown in figure (7). It is clear that velocity u  

decreases with increasing in Sc . In figure (8) the velocity 

profile increases due to increasing heat source parameter S. 

In the figure (9), it is observed that increase in Prandtl 

number Pr causes decrease in temperature. Figures (10) 

show that an increase in heat source parameter S causes an 

increase in temperature profile. From figure (11) it is obvious 

that an increase in Schmidt number Sc  leads to decrease in 

concentration. 

 Figure (12) shows that the skin friction. Knowing the 

velocity field, the skin friction is evaluated in 

non-dimensional form using

0y

u

y




 
  

 
. The 

numerical values of  are calculated by applying Newton’s 

interpolation formula for 11 points and are presented. From 

figure (12) it is observed that an increase in Grashoff number 

Gr and heat source parameter S causes an increase in skin 

friction and an increase in magnetic parameter M leads to 

decrease in skin friction.  
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Fig. 1: The velocity profile for different values of M  
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Fig. 2: The velocity profile for different values of Gr  
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Fig. 3: The velocity profile for different values of N  
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Fig. 4: The velocity profile for different values of t  
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Fig. 5: The velocity profile for different values of K  
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Fig. 6: The velocity profile for different values of Pr  
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Fig. 7: The velocity profile for different values of Sc  
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Fig. 8: The velocity profile for different values of S  
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Fig. 9: The temperature profile for different values of 

Pr  
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Fig. 10: The temperature profile for different values of 

S  
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Fig. 11: The Concentration profile for different values of 

Sc  
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Fig. 12: The skin friction profile for the different value of M , 

Gr and S  
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