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Abstract — This article explores landslide susceptibility 

mapping in the district of Mananjary, Madagascar, through 
the application of a logistic regression modeling approach. 
Through geospatial data, including climate, environment, 
geology and topography, a comprehensive model is constructed 
to assess and map landslide susceptibility. Logistic regression 
was used to quantify the interdependencies between these 
variables and landslide occurrences, enabling the identification 
of susceptible areas. The study enhances comprehension of 
spatial landslide distribution in the district, offering valuable 
insights for proactive risk management and better 
decision-making. It exemplifies the integration of geospatial 
technologies and statistical modeling for accurate and 
applicable landslide susceptibility mapping, offering a 
foundation for future research in similar regions facing 
georisks. Findings reveal the key factors influencing landslide 
occurrence and model validation showed satisfactory 
prediction with an AUC of 81 %, providing valuable insights 
for policymakers and local communities to formulate effective 
mitigation strategies. 
 

Keywords — geospatial assessment, landslide susceptibility, 
logistic regression, Mananjary district, Modeling  
 

I. INTRODUCTION 
Natural disasters, such as cyclones, often leave a trail of 

devastation in their wake, significantly impacting the 
physical and environmental landscape [1]. Among the 
various consequences, landslides represent a critical 
geohazard that poses substantial threats to human lives, 
infrastructure, and the overall stability of affected regions 
[2]. The district of Mananjary, located in the southeastern 
part of Madagascar, faced the powerful impacts of the 
Chezda cyclone in 2015, heightening the district's 
susceptibility to landslide occurrences.  

 
Landslide susceptibility mapping has emerged as a crucial 

tool in disaster risk management and reduction providing 
valuable insights into the area’s most susceptible to 
landslides [3]–[5]. The aftermath of the Chezda cyclone in 
this district has underscored the need to study the interplay 
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of environmental factors that contribute to landslide 
susceptibility in a post-cyclonic landscape. In this context, 
we present a comprehensive investigation using logistic 
regression modeling as a robust analytical framework to 
assess and map landslide susceptibility in the region. 

The objectives of this study include the identification of 
the key factors influencing landslide susceptibility, the 
development of a reliable predictive model, and the 
generation of susceptibility maps to assist local authorities 
and stakeholders in making informed decisions for disaster 
management.  

Through this research, we aspire to contribute to the 
expanding corpus of knowledge on landslide susceptibility 
mapping and to provide valuable insights that can enhance 
the resilience of communities facing the imminent threat of 
landslides in similar geographical settings.  

II. MATERIALS AND METHODS 

II.1. Study area 
Belonging to Vatovavy region, the district of Mananjary 

is situated in the southeastern part of Madagascar. Bordered 
to the north and south respectively by the districts of 
Nosy-Varika and Manakara, to the west by the district of 
Ifanadiana, and to the east by the Indian Ocean, it comprises 
29 communes. It covers an area of approximately 5,450 km². 
The altitude in the district of Mananjary varies from -8 m to 
682 m (Figure 1). 

Climate 
The climate in the district of Mananjary is hot and humid 

tropical. Despite the rains persisting almost all year long, a 
less humid season is observed from April to August, when 
drizzle replaces the heavy thunderous downpours from 
November to March. There is a brief dry season in 
September to October. The average annual rainfall is 1,500 
mm, but can exceed 3 meters. The average temperature 
ranges between 27°C in the hot season and 19°C in the cool 
season. 

Hydrology 
The hydrographic network of the district of Mananjary is 

oriented towards the Indian Ocean, to which it is tributary. It 
is shaped by the orogenic curvature of the area, highlighted 
by the Mananjary River. The course of this major river 
generally runs parallel to the schistosity lines of the 
crystalline schists on which it flows. Mananjary River has 
several tributaries such as Sahanofa, Ivoana, Ampasary, etc. 
The entire water system of the district includes numerous 
sections with many rapids. 
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Population and Infrastructure 
The population of the district of Mananjary is unevenly 

distributed, with an estimated density of 51 people/km² in 
2018 [6]. It is significant in towns, particularly the main 
municipal centers, and is lower in the rest of the district. 
Roads constitute the primary physical infrastructure in the 
district of Mananjary. The road network of the district 
consists of four national roads (RN11, RN12, RN24, and 
RN25) and several secondary roads. The Canal des 
Pangalanes, located in the far east of the district and 
bordering the Indian Ocean, is a significant infrastructure 
that connects the cities of Toamasina and Farafangana, 
passing through Mananjary. It represents a crucial economic 
artery for this area. 

 
Figure 1. Study area 

Geology 
The Precambrian shield of Madagascar is divided into six 

geodynamic domains (Bemarivo, Antongil-Masora, 
Antananarivo, Ikalamavony, Anosyen-Androyen, and 
Vohibory) with a subdivision into sub-domains of two 
domains. The Antongil-Masora domain has been subdivided 
into the Antongil sub-domain and the Masora sub-domain, 
while the Anosyen-Androyen domain has been split into the 
Anosyen sub-domain and the Androyen sub-domain [7]. 

The district of Mananjary is characterized by two distinct 
domains and Cretaceous volcanism. Its northwest part 
corresponds to the southern section of the Masora 

sub-domain. This area is defined by the Vohilava-Nosivolo 
group and the Maha group. It is primarily composed of 
undifferentiated schists, pelitic schist, and amphibolite [7]. 
This northwest part of the district is also characterized by 
the Nosy Boraha suite of the Mesoarchean, primarily 
consisting of migmatitic orthogneiss of Befody [7]. The 
southwest sector of the district of Mananjary belongs to the 
Antananarivo domain and is characterized by formations of 
the Manampotsy group [7]. It mainly comprises Ampasary 
paragneiss with relics of ultrabasic rocks, schist, and 
quartzite. Additionally, there are granite, monzonite, 
undifferentiated syenite, and stratoïd syenite rocks in the 
area [7], [8]. In its eastern part, the district of Mananjary is 
formed by Cretaceous volcanic formations about twenty 
kilometers wide, creating a band parallel to the coast. 
Various petrographic varieties are found here, including 
basalts, basanites, and a small proportion of rhyolite, 
trachyte, and phonolite [8]. 

II.2. Data used 
The study utilized various data sources (Table 1) to 

conduct a comprehensive analysis of landslide 
susceptibility. 

Table 1. Overview of the types and sources of data used 
in this study 

Variable 
Resolution 

(m) / 
Scale 

Source 

Elevation 30 SRTM 1 Arc-second 
https://earthexplorer.usgs.gov/ 

Slope 30 Derived from SRTM 1 
Arc-second 

Aspect 30 Derived from SRTM 1 
Arc-second 

Curvature 30 Derived from SRTM 1 
Arc-second 

NDVI Multi: 10 
Pan: 2.5 

Derived from SPOT 5 images 
http://www.seas-oi.org 

Distance 
from 
roads 

- OpenStreetMap 
https://www.openstreetmap.org/ 

Distance 
from 
rivers 

- OpenStreetMap 
https://www.openstreetmap.org/ 

Rainfall - http://iridl.ldeo.columbia.edu/ 

Lithology 1 : 500000 Malagasy geological service 

Note: NDVI – Normalized Difference Vegetation Index, 
Multi – Multispectral bands, Pan – Panchromatic band 

 
Landslide inventory 

The landslide inventory serves as a crucial and 
fundamental foundation for the investigation of the 
correlation between landslides and influential factors, as 
well as for modeling. It is imperative not only for the 
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creation of statistical models as an explanatory component 
but also for the validation stage. The landslide inventory 
database was created exclusively through field campaigns.  

A field campaign that lasted for ten days took place in 
April 2015. The objective of the mission was to record 
landslides in the district of Mananjary, specifically along the 
national road axes (Figure 2). For model development, 80 % 
of collected data were used as the training dataset, while 
20 % were reserved for the model validation. 

 
Figure 2. Landslide on national roads #12 (a) and #25 (b) 

Vegetation index 
The NDVI (Normalized Difference Vegetation Index) is 

an important index for assessing landslide susceptibility, as 
it affects the stability of the terrain. It is an index derived 
from reflectance measurements in the red and near-infrared 
parts of the electromagnetic spectrum that describes the 
relative quantity of active green biomass present at the time 
of image capture [9].  

The Spot 5 images were used to create the NDVI. The 
most common formula used to create NDVI is as follows:  

 
(Equation 1) 

where R and NIR are the spectral reflectance measurements 
acquired in the red and near-infrared bands, respectively. 
The value of the NDVI ranges from -1 to 1.  

Elevation 
Elevation significantly influences the occurrence of 

landslides due to its impact on the spatial variation of both 
hydrological conditions and slope stability [10]. Elevation 
data served as the basis for deriving thematic data layers 
which include slope, aspect and curvature.  

The elevation in the district of Mananjary varies from -8 
m to up to 650 m.  

Slope angle 
Slope angle is the most important variable in slope 

stability analysis [11]. The slope angle is the most important 
variable in slope stability analysis [11]. As the slope angle 
increases, the level of rupture stress induced by gravity in 
colluvium or residual soils also increases. Gentle slopes 
should exhibit a low frequency of mass movements due to 
the generally lower rupture stress associated with these mild 
gradients. 

Slope aspect 
The slope aspect displays the direction it is facing. It is 

also considered as an important factor in preparing landslide 
susceptibility maps [12]. The impact of aspect may be 
linked to its associated physical factors, including duration 
of sunlight, wind exposure which causes dryness, and direct 
sunlight itself. Generally, the slope aspect is categorized into 
nine classes: flat, north, northeast, east, southeast, south, 
southwest, west, and northwest [13]. 

Slope curvature 
As a predisposing factor, curvature is a key factor in 

assessing landslide susceptibility. Topographical 
morphology is characterized by curvature values that play a 
significant role in water retention during rainfall. It is 
categorized into three classes, i.e., concave, flat and convex 
surfaces [14]. Concave areas, indicating a negative 
curvature, are more prone to landslide due to their higher 
water retention capacity. Conversely, surfaces with a 
positive curvature, known as convex areas, are less 
susceptible to such movements. 

Lithology 
Lithology plays a significant role in the assessment of 

landslide due to its various lithologic units having different 
degrees of susceptibility. It directly influences the rocks and 
soils strength and permeability and indirectly dictates the 
type and level of risk in a particular area. For instance, in the 
context of lavakas in Madagascar, the lithology is a 
controlling factor for ground movements [15].  

Rainfall 
Rainfall predisposes to and triggers landslides. 

Madagascar suffers from a scarcity of weather stations, with 
only 25 stations for the entire island (approximately 
587,000 km²), which significantly impacts the rainfall data’s 
accuracy. To address this issue, substitute data obtained 
through remote sensing have been used in this study (Table 
1). 

Distance from rivers  
The drainage of rivers or streams cans lead to banks 

failure due to the underestimation of slopes and the erosion 
of streams. Therefore, the proximity to rivers is considered 
as one of the key factors influencing slope stability. The 
degrees of water saturation in materials directly affect slope 
stability. Hence, the proximity of drainage structure to 
slopes is also an important factor in terms of stability [16].  

Distance from roads 
Several studies have shown the frequent occurrence of 

landslides in close proximity to roads [17], [18]. This is 
mainly due to the fact that most of the roads in the studied 
areas are bordered by slopes and ravines, coupled with 
inadequate drainage. The further away from the road, the 
less likely the terrain is to experience movement.  
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II.3. Logistic regression model 
Input data   

Logistic regression is a statistical technique used to model 
the nonlinear relationship between a binary dependent 
variable and a set of independent variables [19], [20].  

In this study, the variable to be explained is derived from 
a landslide inventory and indicates the presence or absence 
of landslides (coded as 1 or 0, respectively). They include 
ground movements, rockfalls, block falls, or other types of 
soil displacement. 

The explanatory variables, or covariates, are the factors 
being analyzed to understand their impact on the variable to 
be explain. In this study, these include vegetation index, 
elevation, slope angle, slope aspect, slope curvature, 
lithology, rainfall, distance from rivers and distance from 
roads. 

Model construction 
In the simplest form of logistic regression, the 

relationship between landslide frequency and explanatory 
variables can be expressed as follows: 

 
(Equation 2) 

where  represents the probability of a landslide occurrence, 
α denotes the model’s intercept,  is the number of 
variables,  (i=1, 2, …, n) signifies the logic regression 
slope coefficient, and  (i=1, 2, …, n) represents the 
independent variables. The probability ranges between 0 and 
1.  

The logistic regression analysis was conducted using the 
open-source software “R”. Stepwise regressions were 
undertaken. In the descending stepwise regression, all 
explanatory variables are included in the initial regression. 
Variables are then systematically eliminated until there is no 
longer a significant change in the regression. To do so, the 
p-value of each variable was determined. A p-value ≤ 0.01 
corresponds to very strong significance; 
0.01 < p-value ≤ 0.05 indicates strong significance; 
0.05 < p-value ≤ 0.1 signifies weak significance, and a 
p-value > 0.1 indicates lack of significance. 

Validation of the model 
The model of landslide susceptibility was validated using 

observational data. Model effectiveness was assessed 
through the computation of the Area Under Curve (AUC) 
derived from the Receiver Operating Characteristic (ROC) 
curve. A perfect model corresponds to an AUC of 1. 
Sensitivity and specificity of the models (Equations 3 and 4 
respectively) were also determined, using optimal thresholds 
derived from the susceptibility classes of the model. 

 
(Equation 3) 

 
(Equation 4) 

where TP (True Positives) and TN (True Negatives) 
represent the correctly classified landslide events, and FP 
(False Positives) and FN (False Negatives) denote the 
inaccurately classified landslide events. 

III. RESULTS 

III.1. Landslide susceptibility map 
Following the application of a stepwise descending 

method, the β coefficient for each conditioning factor is 
presented in table 2. The explanatory variables retained for 
the final model were rainfall, slope, distance from roads, 
elevation, NDVI, distance from rivers, and lithology (Table 
2). Despite its lack of significance, the lithology variable 
was incorporated into the model, since it is a crucial factor 
in landslide occurrence. It was noted that elevation, slope, 
lithology, rainfall, and distance from roads significantly 
contribute to mapping susceptibility to landslides due to 
their positive β coefficients. On the other hand, variables 
with a negative β have an opposing effect. 

 
Figure 3. Landslide susceptibility map of the district of 

Mananjary 

The generated landslide susceptibility map is depicted in 
figure 3. These susceptibilities were computed based on 
equation 2. The distribution of susceptibility classes is 
defined as follows: 85% for low susceptibility, 9% for 
moderate susceptibility, and 6% for high susceptibility. 
According to figure 3, areas intersected by the road network 
exhibit a high susceptibility to landslides. This network 
primarily comprises national roads #11, 12, 24, and 25. The 
central-eastern part of the district of Mananjary is 
characterized by a predominance of high susceptibility to 
landslides. 

Table 2. Regression coefficient and p-value 

Predictors  Coefficients p-value 
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NDVI  -9.82E-04 0.000408 

elevation  3.75E-02 0.000176 

Slope angle  1.36E-01 1.39E-05 

Curvature  - - 

Aspect  - - 

Lithology  1.26E+00 0.064674 

Rainfall  9.84E+01 4.58E-06 

Distance from 
rivers 

 -5.06E-04 0.064474 

Distance from roads  1.38E-03 0.000141 

Constant  -4.52E+01 0.000538 

Note: p-value in bold correspond to the most significant 
variables (with a significance level of 0.05). Variables 
without values represent non-significant explanatory 
variables and are excluded from the final models. 

III.2. Model validation 
The susceptibility model validation outcome reveals a 

satisfactory performance [21], with an AUC of 0.811 
(Figure 4). The model exhibits a sensitivity of 91.1% and 
specificity of 67.9% (Table 3). Given its higher sensitivity 
compared to specificity, the model effectively identifies 
areas prone to landslides. 

 
Figure 4. ROC curve of the model 

 

Table 3. ROC analysis result 
  Observations 

Susceptibility model  Present  Absent 

High  TP: 51 FP: 18 

Low  FN: 5 TN: 38 

Accuracy  79.464 % 

Sensitivity  0.911 

Specificity  0.679 

Note: TP (True Positives), TN (True Negatives), FP (False 
Positives), FN (False Negatives), 
Accuracy = (TN+TP)/(TN+TP+FN+FP), 
Sensitivity = Equation 3, Specificity = Equation 4 

IV. DISCUSSION 
In landslide modeling process, the quality of models 

relies significantly on the relevance, the quality, and the 
reliability of the chosen conditioning factors, along with 
their input data, and the applied methodology [22]. 
Therefore, the careful selection of conditioning factors is 
pivotal for achieving accurate outcomes. This study has 
specifically concentrated on primary geo-environmental and 
climatic factors. Secondary factors, such as roughness index 
and topographic position index, were not taken into account. 
Moreover, the choice of conditioning factors is also 
contingent upon data availability. For instance, in our case, 
data pertaining to distances from faults were not accessible. 

The susceptibility to landslide can be mapped using 
various methods, depending on the available data [23]. 
However, no consensus has yet been reached on the optimal 
method for generating maps of landslide susceptibility [24]. 
Compiling data on terrain movements is particularly 
challenging due to the often-restricted availability of 
datasets, especially in Madagascar. Conducting field surveys 
represents the most accurate method for assessing 
susceptibility to terrain movements. However, analyzing the 
potential for movements across an extensive area is highly 
challenging and entails significant time and financial costs. 
This is particularly true in developing countries, such as 
Madagascar, where on-site observation is prohibitively 
expensive, and most areas are inaccessible. [25] and [26] 
have suggested that not only, generating reliable 
susceptibility maps should be feasible but may also be more 
accurate. In many countries, remote sensing data may be the 
sole possible source available for such studies. The available 
satellite data can offer valuable and accurate insights into 
the surface characteristics of the Earth and the dynamic 
processes involved in the occurrence of landslides. 

GIS became a highly valued tool for evaluating landslide 
as they enable the analysis of a large quantity of information 
from various sources and at various scales over a relatively 
short period. Logistic regression models have been widely 
applied in landslide mapping [27], [28]. Thus, the logistic 
regression model could be applied for predicting future 
susceptibility to landslides in Madagascar. In this study, all 
coefficients, except those related to NDVI and distance from 
rivers for study district, are positive. This suggests a positive 
association with the probability of landslides. Rainfall, 
elevation, lithology, and slope angle appear to be more 
strongly associated with landslides than the other factors. 
[20] developed a logistic regression model for the Hendek 
region in Turkey, incorporating 14 factors that highlighted 
the significance of geology (lithology), land use/cover, 
elevation, slope, and distance from streams. [12] applied the 
logistic regression model to assess terrain susceptibility in 
Trabzon, Northeast Turkey. Their findings indicated 



 
Geospatial assessment of landslide susceptibility in Mananjary district, Madagascar:  

a logistic regression modeling approach 

                                                                                                  6                                                            www.erpublication.org 

positive associations between geology, slope, and aspect 
with terrain movement occurrence. Conversely, land use, 
distance from the stream, elevation, and distance from road 
seemed to have a negative association with the presence of 
movement in their study area. 

The model outlined in this study not only delineates the 
locations of documented landslides but also provides a 
susceptibility index for the entire study area. The derived 
susceptibility map can be overlaid with land use, 
geological/geomorphological, and development maps for 
decision-making purposes. This map can serve as a broad 
reference for risk and disaster management authorities, such 
as the Malagasy BNGRC. However, it's important to note 
that the map generated in this study lacks details on the 
rupture period, rupture type, or volume of materials. 
Consequently, it should not be viewed as a substitute for 
site-specific scientific investigations or the professional 
guidance of qualified geologists, geotechnicians, and 
planners but rather as a supporting document. 

V. CONCLUSION 
In conclusion, this study successfully applied logistic 

regression to assess landslide susceptibility in the district of 
Mananjary. To our best knowledge, it has resulted in the 
first landslide susceptibility map in this district. The findings 
highlight the significance of elevation, slope, lithology, 
rainfall, and distance from roads in determining 
landslide-prone areas. The developed model demonstrated 
robust predictive capabilities, offering a reliable tool for 
decision-makers to prioritize vulnerable zones for 
preventive measures. This study thus makes a substantial 
contribution to the understanding of landslide and lays the 
groundwork for developing targeted strategies to mitigate 
the impact of landslides in the studied district, thereby 
advancing promoting sustainable development and 
community resilience.  
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