
 

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-11, Issue-10, October 2021  

                                                                                                    1                                                            www.erpublication.org 

LSTM and LSTM Autoencoder for Predictive 

Maintenance Approach Applied to Slagging Formation  

Ulrich BIAOU, Donald MOUAFO, Michael BOCQUET

Abstract: The industrial system relies on the manufacturing 

infrastructure which is susceptible to failures. These failures 

often induce severe consequences such as downtime and 

expensive corrective maintenance actions. An optimal 

maintenance management system is therefore essential for 

anticipating failures, and likely to provide cheaper and better 

service quality. In this paper, we propose a data-driven approach 

for predicting the slagging formation leading to downtime of the 

production system and expensive maintenance actions in coal-

power plant industry. The approach relies on Long Short-Term 

Memory (LSTM) Neural Networks (NNs) for Remaining Useful 

Life (RUL) prediction by either forecasting or classification 

methods. We suggest two stages stacked model architecture 

consisting of an unsupervised LSTM autoencoder for feature 

extraction from high correlated multivariate time series data and 

LSTM NN for prediction. In addition, we developed an alternative 

approach relying on an optimized LSTM model serving as 

benchmark for model evaluation. The obtained results show that 

the stacked model outperforms an optimized simple LSTM model 

for RUL forecasting. For classification both models lead to high 

performances such that the discrimination could mitigated as the 

simple LSTM is gingerly optimized, the stacked model remains 

preferable for stability reasons. 

Index Terms: LSTM, RUL, slagging, predictive maintenance.  

I. INTRODUCTION 

In the new generation of industries refer to as industry 4.0, 

the production infrastructures are connected to the digital 

environment thanks to the internet of things (IoT) 

technologies (Zonta et al., 2020). This enables collecting big 

amounts of data containing crucial information from 

manufacturing process and system dynamics. An appropriate 

processing of such data can likely permit accessing valuable 

insight and provides key input to the prognostic health 

management (PHM) critical for maintenance cost reduction. 

This gives promise to data driven predictive maintenance 

(PdM) that is a maintenance management strategy consisting 

of scheduling maintenance actions at the appropriate time 

before equipment failure.  

Three approaches of implementing PdM exist in the 

literature [2]; (Zonta et al., 2020). The Physical model-based 

approach relying on mathematical modelling of the 

equipment’s conditions. The knowledge-based approach 

which is a hybrid method combining statistics, domain 

expertise and other fuzzy logic to develop failure prediction. 

The Data driven approach based on machine learning (ML) 

models, increasingly adopted the last recent years as the 

most promising strategy for PdM solutions. Based on the 

available information on historical data, ML models for PdM 

can be either supervised or unsupervised [3]. In the case of 

not clear knowledge of historical failures, anomaly detection 

methods can be applied as there is no requirement of labeled 

data. Supervised learning in contrast requires labelled data 

for model training and testing. This implies the availability 

of sufficient information on historical faults in other to 

conduct the labelling. Depending on the situation, the 

suitable PdM solution can either be a regression [1] or a 

classification [4]. The purpose of regression is to predict the 

remaining useful life (RUL) while in classification, the 

concern can be either binary or multi class. Binary 

classification often concerns predicting the likelihood of 

failure to occurs within a given future time period. It 

happens to target different future time periods at once or 

instead, different type of futures using multiclass 

classification [5].  

ML models for PdM have been constantly increasing these 

recent years in a variety of industrial sectors [2] and [1]. For 

instance, in automotive industry, Random Forest (RF) has 

been employed to develop a predictive model for air 

compressor failures based on available warranty and logged 

vehicle data [6]. A similar model was employed for faults 

detection of stator winding short circuit in squirrel-cage 

induction motors [7]. Also, Fault prediction of gearbox 

systems with SVM model using sound and vibration signals 

has been reported [8]. In semiconductor microelectronic 

manufacturing, [9] reported on an ensemble technique 

consisting of Generalized Linear Model, RF, GBoosting, and 

ANNs for the prediction of RUL of equipment components 

using sensor data. Similarly, in the retail industry [10] 

reported on the fault prediction on refrigeration and cold 

storage system of supermarkets using historical data of 

temperature based on RF models. PdM has also proven 

important promise in the Oil & gas industry where ML 

based IA approaches are widely used for maintenance 

management of production health equipment [11]. More 

specifically, [12] proposed a neural network model to predict 

corrosion induced leakage in petrochemical pipelines using 

sensor data of pressure, temperature and instantaneous liquid 

flow rate. They addressed the problem as a multi-class 

classification with classes ranging from the healthiest state 

to failure and found that LSTM performs better than RF.  

Data driven failure detection approach can apply to any 

industrial sector provided that historical data with suitable 
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properties are available. In this paper, we develop a model 

for slagging prediction. Slagging is a phenomenon that 

appears in boilers of coal-fired power plants and induces 

large and expensive maintenance actions as well as reducing 

the lifetime of the production devices. An efficient slagging 

prediction method can enable better anticipation of 

maintenance actions in order to reduce the downtime of 

boilers and the cost of the maintenance. In addition, 

anticipating the slagging event also enables reducing the 

volume of pollution gases participating thus in minimizing 

the environmental impact of electrical production. In the 

literature, most of the solutions for slagging prediction rely 

on physical model-based approaches exploiting the thermo-

chemical conditions within the boiler [13] [14]. In some 

cases, these methods enable to calculate the slagging index 

which guides maintenance management [14]. However, they 

require detailed knowledge of the physical nature of the 

thermo-chemical mechanisms leading to the slagging 

formation. Unfortunately, these mechanisms are known to be 

extremely complex making their theoretical formulation 

complicated. As consequence, model-based approaches for 

slagging prediction have limited efficiency and do not 

generalize well. We propose an approach for slagging 

prediction based on LSTM and LSTM autoencoder using the 

sensor data of boilers in coal-fired power plant. The rest of 

the paper is organized as follows: In Section 2, we describe 

the data set and present the maintenance request. In Section 

3, we present the methodology and provide a general 

overview of unsupervised LSTM autoencoder and LSTM 

modules together with the details of the model architecture. 

In Section 4, we present model evaluation followed by the 

discussion. The paper ends with the conclusion. 

II. DATA SOURCE AND MAINTENANCE REQUEST 

A. Data Source 

The data source consists of multivariate time series sensor 

data collected on the boilers of a coal-fired power plant. The 

data set includes three of non-necessarily consecutive years 

data record spread in 3 files (each of one year data record). 

Each file consists of 116 numerical features recorded every 5 

min time step. The features include data such as flue gas 

temperature and pressure, the flow rate or active electrical 

power or order indicator of power plant. The Table 1 

summarizes the available data file and the corresponding 

size and records. 

The data are provided by “Energies de Portugal” (EDP) 

company and available on EDP data repository. They were 

collected by the sensors deployed on different equipments of 

the production chain. Often, many sensors are replicated at 

different positions of the same equipment to ensure complete 

information.  The number of replicates depends on the 

equipment and the sensed information. For example, to 

probe the temperature of the drum, four sensors are deployed 

at four different parts of the drum while only one sensor is 

dedicated to the pressure within the drum. This is because 

the inhomogeneity of the temperature is more likely than 

that of the pressure. 

File Name  Shape 

boiler_unitx_xxx0.csv (55284, 116) 

boiler_unitx_xxx3.csv (105408, 116) 

boiler_unitx_xxx4.csv (105408, 116) 

Table 1. Summary of data files recorded on one boiler 

denoted ‘boiler X’  

B. Data Exploration And Cleaning 

The Fig. 1. presents 5 features recording the temperatures 

within the coal mills equipment. The Fig. 1. (left panel) 

displays the temporal behavior of the 5 temperatures. While 

the right panel presents the heatmap of the Pearson 

correlation coefficients between the five temperatures. One 

notices a strong correlation between these five sensors 

temperatures. This is a general tendency not only for the 

features collected from sensors replicated on the same 

equipment, but also other features of the data set and 

suggests deeper attention to the process of feature extraction 

and selection. It is worth noting that the analysis discussed in 

this section goes beyond the features highlighted in Fig. 1 & 

2 and concerns all other features of the data set. Classical 

methods commonly used to concomitantly handle 

redundancy in the data set and reduce the dimensionality 

such as principal component analysis (PCA) failed to 

properly extract representative features, probably due to 

temporal correlation. Feature extraction has required more 

advanced methods based on LSTM autoencoder as will be 

detailed later. Alternatively, a relevant approach for 

dimensionality reduction precisely consisted in selecting one 

feature from each group of replicated features. This selection 

process results to 47 features used to develop the benchmark 

LSTM model. The data set contains missing values which 

are not always randomly distributed. Instead, they are 

sometimes expanded on several consecutive days. 
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Figure 1: Distribution and correlation of historical temperatures of the output mixture of coal Mill. The left panel presents the 

line plot, the legend corresponds to the exact names of the features. The right panel presents the heatmap of correlation 

coefficient and the sticks label represent the truncated names of the corresponding features.

Decomposition analysis did not demonstrate any noticeable 

seasonality. In addition, autocorrelation analysis did not lead 

a positive conclusion. We filled missing values using rolling 

mean methods within 30 min time windows. The Fig. 2 (a, 

c) illustrates the distribution of 2 random features and Fig 2 

(c & d) presents their corresponding box plot and statistical 

distribution. The box plots demonstrate an abundant 

presence of outliers which are also very spread. The 

statistical distribution of both features shows bimodal 

behavior which the smaller reveals the distribution of 

outliers. To ensure homogenous contribution of all 

numerical features’ values during model training, we 

applied

Min-Max normalization. Furthermore, in order to minimize 

the intrinsic noise, the data were resampled by taking the 

mean every 30 min windows corresponding to every 6 

instances. 

C. Maintenance Request 

The structure of the dataset induces important constraints in 

their preparation prior to train the model for slagging 

prediction. Indeed, for the entire period, only one slagging 

date is known. In general, for PdM, the data must be 

organized in cycles of operations. In case of classification, 

each instance of the cycle must be properly labelled. Ideally, 

each cycle consists of historical operations ending with 

failure after which a new cycle starts. Thus, no matter how 

the data is organized, one must be able to identify the 

beginning and end of each cycle. As described in section 2, 

the dataset provided by EDP consists of three years 

continuous acquisition data with a single known slagging 

date. This makes the repartition of data in cycles unrealistic 

for the entire period. Therefore, in this paper, we limited the 

study to the time interval not exceeding 60 days before the 

slagging date as there was no other slagging event reported 

during this period. We adopted both regression and 

classification approaches. For regression, starting 45 days 

before the known slagging day, the RUL is defined as the 

remaining number of days until the slagging following the 

Eq. 1. Therefore, all the data instances of a given date share 

the same RUL values. 

                        (1) 

Where          refers to the slagging date and         the 

date of the    data instance. For the classification, we 

adopted a binary approach and, instead of labeling the exact 

slagging date as failure and the other as normal, we 

implemented an anticipation logic. In this context, we define 

a failure date as                             . Hence, 

the     data instance is labeled “1” if the corresponding     

date is equal to the failure date, otherwise it is assigned the 

label “0”. To guarantee the predictive aspect of the 

approach, the historical data starts 60 days before and ends 
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at the failure day. This provides 15 days anticipation for any 

true positive prediction. 

           {
                          

                           
 (2) 

With          is the label of the     data instance. This 

labeling method results in high class imbalance which 

requires attention when training the model. 

 
Figure 2: Distribution of two random features. (a) and (b) present the line plots of the two features. (c) presents the box plot 

of the two features. (d) presents the histogram plot of the two features. 

III. METHODOLOGY 

Addressing the maintenance requests presented in section 

2.3 requires considering two main characteristics of the 

data. First, the high dimensionality with important features 

correlation highlighting information redundancy. Second, 

the temporal correlation which integrates the hidden pattern 

in historical data resulting in the slagging. To address the 

two challenges, we propose a stacked model consisting of 

an unsupervised LSTM autoencoder NN [15] for feature 

extraction and LSTM NN [16] for prediction. Indeed, both 

LSTM autoencoder and LSTM NN have proven stat-of-art 

performance respectively for feature extraction from 

multivariate time series data while keeping the maximum 

information from the hidden pattern of temporally correlated 

data [16]; [17]. 

A. LSTM Autoencoder 

  An autoencoder is an unsupervised NN that aims to learn 

the best representation of the input data. Its architecture 

generally consists of an input layer, an output layer together 

with hidden layers consisting of two symmetric neural 

networks representing the encoder and the decoder both of 

which sandwich a latent space representation layer of the 

input dataset. When an input data is fed to the auto-encoder, 

it is compressed by the encoder into the latent space, 

whereas the decoder decompresses the encoded 

representation into the output layer. The encoded-decoded 

output is then compared with the initial input data and the 

error is back propagated through the architecture to update 

the weights of the network [16]. In particular, when feeding 

the autoencoder with an input data                  
with   the number of features (     ), the encoder 

compresses   into an encoded representation         
                       with       The decoder then 

reconstructs the encoded representation back to a    

representation  ̂          ̂   ̂       ̂   that is as close 

as possible to    This training is conducted by minimizing a 

reconstruction loss function such as Mean Square Error in 

this case (MSE ∑ ‖   ̂‖ 
  . Doing so, the autoencoder 

is forced to reduce the data dimension while keeping the 

major information of internal data structure. Therefore, it is 

a powerful tool for feature extraction. Depending on the 

type of NN used for encoder and decoder, different variant 

of autoencoder have been proposed in the literature 

including Vanilla autoencoder, convolutional autoencoder, 

regularized autoencoder, and LSTM autoencoder. The latter 

has demonstrated improved potentiality in encoding 

multivariate time series data. [16] exploited the automatic 

feature learning capabilities of LSTM autoencoder 

combined with LSTM NNs to demonstrate an end-to-end 

model for forecasting rare events in drive demand. More 

recently, [17] demonstrated a stacked LSTM 

autoencoder/LSTM based model outperforming simple 

LSTM model for anomaly detection in the supply chain 

management. This demonstrates the capability of LSTM 

autoencoders for capturing hidden nonlinear correlation in 

temporal data when conducting encoded representation of 

input data. 

B. Long Short-Term Memory Networks 

LSTM is a particular type of RNN that consists of a chain of 

repeated NN modules allowing at a given time to retain 

long-term memories from many timesteps back. In standard 

RNNs, the repeated module has a simple structure with 

single tanh layer making the memory persistence not 

(a) (c)

(b)

(d)
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efficient. This problem is accurately handled in LSTM 

architecture with a repeating module composed of three 

gates and tanh layers. Each gate including the forget gate, 

the input gate, and the output gate consists of a sigmoid 

layer and a pointwise multiplication operation [17] [18]. A 

key quantity to LSTM, namely cell state   , runs straight 

down the entire chain of modules. In each module, it 

undergoes minor linear interactions which enable removing 

or adding information decided respectively by the forget 

gate and input gate based corresponding sequence data    

and the output      of the previous modules [17]. 

 
Figure 3: Internal structure of an LSTM neural network 

module. 

 

When new input at time    denoted          (     ) is 

fed to an LSTM module, it is first concatenated with the 

output      from the previous time step    . Then, the 

forget gate decides what old information should be forgotten 

by computing a number          following Eq. (3). The 

value 0 means “let nothing through” while the value 1 

means “let everything through”. 

                               (3) 

Where,    is the weight matrices and    the bias of the 

forget gate. Following, the information to update the cell 

state is processed. The decision value    is determines in the 

input gate layer (Eq. (4) along with the vector of candidate 

values    (Eq. (5) computes by the tanh layer.  

                                (4) 

                                   (5) 

From, the previously computed quantity, the new updated 

cell state    is subsequently computed (Eq. 6) (  ,   ) and 

(   ,   ) are respectively the weight matrices and the biases 

of the input gate and tanh layer.  

                            (6) 

Finally, the module’s output    is computed by applying the 

output gate to the candidates generated by the last tanh layer 

Eq. (7) and Eq. (8).  

                                   
(7) 

                

Where    and    the weight matrix and the bias of 

the output gate. 

(8) 

C. Model Architecture 

The synopsis of the process includes the stacked model 

architecture with two main stages; the LSTM encoder-

decoder used for feature extraction and the LSTM NN for 

either RUL forecasting or binary classification following the 

maintenance request presented in section 2.3. It is worth 

emphasizing that the LSTM benchmark model do not 

include the autoencoder and feature are extracted based on 

the fuzzy logic detailed in section 2. The input to LSTM 

prediction model results from the encoder-decoder pre-

trained to extract the best embedding representation from 

the multivariate time series input data. Especially, once the 

autoencoder is trained, the input data for the second stage of 

the model in then predicted from the embedded 

representation layer of autoencoder. For RUL forecasting 

the training is conducted by minimizing the mean absolute 

error MAE loss function      ∑ ‖ ̂    ‖ 
     . The 

performance of the forecasting LSTM model is evaluated 

using the root mean square error (RSME) [17].For binary 

classification, the training is conducted by minimizing the 

binary cross entropy loss function. The evaluation is 

conducted based on standard binary classification metrics 

including the accuracy, the recall, the precision and the F1-

score [5] [17]. The TP in the classification metrics refers to 

true positive values i.e., the number of correct data instances 

of the failure day correctly classified as failure. TN (True 

Negative) is the number of normal data instances (instances 

prior to the failure day) correctly diagnosed as normal and 

FP (False Positive) the number of normal data instances 

prior to failure incorrectly classify as failure and FN (False 

Negative) refers to number of failure instances mis-classify 

as normal data. In general, the accuracy is insensitive to 

imbalance data set and might produce misleading 

conclusions. Precision is a better measure of the capability 

of the model to correctly assign appropriate labels while the 

Recall evaluates the completeness of the model. F-score 

represents the balance between the two latter measures of 

the model.  
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Figure 4: (a) Line plot of the train and validation loss from the LSTM autoencoder. (b) Evolution of train and validation 

RMSE versus the dimension of the space representation of the autoencoder. 

IV. SLAGGING PREDICTION 

To train the model, we define the train, validation and test 

set by splitting the data every three instances such that 

              
                          with          for 

the train, validation and test sets respectively. Where   

refers to the RUL or labels. We optimized the sliding 

window and obtained the optimal value of 12 i.e., we take 

every 12 consecutives instances to predict the RUL of the 

next instance. We keep a dropout of 0.2 in all the layers of 

both stages to avoid overfitting. Detail composition of the 

autoencoder model and the corresponding hyperparameter 

are provided in the appendix. The autoencoder is trained 

once on the train set and the dimensionality of the latent 

space is set to 32 as this value has shown to result to the best 

embedded representation after multiple tests. The embedded 

representation of the train, validation and test sets used to 

train, validate and evaluate the RUL forecaster or the label 

classifier is subsequently predicted from the trained 

autoencoder using the corresponding dataset. The significant 

decrease of the train loss and validation loss of the 

autoencoder (Fig. 4 (a)) illustrates the improvement of the 

encoding representation over the epochs. In order to find the 

best dimension of the space representation for the 

multivariate input data i.e., the best number features to train 

the forecaster, we trained the autoencoder multiple times 

with different space representation dimension. The train and 

validation RMSEs versus the space representation 

dimension reported in Fig. 4 (b) shows a rapid decrease 

toward an asymptotic minimum from a value 32. This 

finding suggests 32 features as good enough to efficiently 

represent the input data set and may open a relevant 

discussion regarding an eventual optimization of the data 

collection process. 

 

A. RUL Inference  

 The parameters of the optimized model trained for RUL 

predictions are detailed in the appendix. The training is 

conducted using the encoded representation obtained from 

LSTM autoencoder. The Fig. 5 (a) presents the evolution of 

the MAE on both train and validation sets over the epochs. 

The Fig 5 (b) presents the visual comparison between true 

RUL values (section 2.3) and the predictions on the test set. 

The convergence of the MEA for both training and 

validation sets illustrates the absence of noticeable variance. 

The robustness of the approach is further supported by the 

value of the MSE and RMSE measures provided in Table 2 

for both test and validation sets. Alternatively, the LSTM 

benchmark model with the same architecture as the 

forecaster was trained on the data set of the 47 selected 

features (see section 2.2). The model was first optimized on 

the train set and subsequently trained with the obtained best 

parameters (unit = 90, dropout=0, lr = 0.01). The obtained 

evaluation metrics for the same number of training epochs 

are provided in Table 2 (values between the parenthesis). 

The Fig. 5 (c) presents the comparison between the true 

RUL and the obtained prediction.  One observes clearly that 

the stacked model trained with all features outperforms the 

simple optimized LSTM model trained on the 47 selected 

features. 

 MAE MSE RMSE 

Validation 
 0.196 

(2.793) 

 0.169  

(20.666) 

 0.411 

(4.446) 

Test  0.195  

(2. 376) 

 0.215 

(15.877) 

 0.464 

(3.984) 

Table 2. Evaluation metrics on the test and validation sets 

for the stacked (benchmark) models. 

(b)(a)

x10
-1x10-2
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Figure 5: Results of the RUL forecasting.  (a) Train and validation Loss over the epochs of the stacked model. (b) True and 

predicted RUL using the stacked model and benchmark model (c). 

B. Classification Inference 

The study for classification follows similar logic, i.e., we 

trained the stacked model on full data and a simple 

optimized LSTM model on the selected dataset. The 

architecture of the classifier in the stacked model is kept 

similar to that of the RUL forecaster (see appendix) and 

activation function is modified to sigmoid correspondingly 

to the classification purpose. However, while keeping the 

same configuration, the optimization of the simple LSTM 

model on the selected features leads to different 

hyperparameters (see appendix). More importantly, we 

implemented a class weight hyperparameter during the 

training of the classifiers which has proved to be extremely 

efficient in handling class imbalance. The weight assigned 

to each class corresponds to its proportion in the data set. 

We present in Fig. 6 the results for the classification request 

for both stacked model (top panels) and simple model 

(bottom panels). The left panel presents the confusion 

matrices of the prediction again the true label for the test set 

while the right panels present the visual comparison of true 

and predicted labels. We observe that both the stacked and 

benchmark models achieved more  

than 99% prediction accuracy on the test set as also 

confirmed on the right panel. We resume in Table 3 the 

values of different evaluation metrics on the test set for the 

stacked model (main data) and the simple model (data in 

parenthesis). One observes that the two models lead to 

efficient failure prediction on both validation and test sets. 

The confusion matrices show that the stacked model leads a 

single FN, classifying a normal instance as failure. The 

situation is reversed for the benchmark model which instead 

leads to a single FP. Interestingly, each misclassification 

takes place close to the transition point from normal to 

failure as observes on Fig. 7 (a & b) (right panels). 

Therefore, it has not major impact on the efficiency of the 

maintenance request. This shows that our LSTM models 

result to high performances in classifying failure instances 

and provide an efficient means to anticipate the slagging 

formation in coal power plant industry. 

 

 

 Accuracy Precision Recall AUC 

Validation 0.9995 (0.9995) 0.9796 (0.9796) 1.0 (1.0) 0.9897 (0.9897) 

Test 0.9991 (0.9995) 0.9792 (0.9796) 0.9792 (1.0) 0.9792 (0.9897) 

Table 3. Classification metrics on the test set and validation set. 
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Figure 6: Results of the label classification. Confusion matrixes of the stacked model (top left panel) and benchmark model 

(bottom left panel). (a) True and predicted labels for the stacked model and benchmark model (b). 

V. DISCUSSION AND FUTURE WORK 

The stacked model demonstrates good prediction for both 

RUL forecasting and failure classification for the maintenance 

request elaborated in section 2.3. The simple model performs 

less for RUL forecasting while for classification it also 

demonstrates good performances. The comparative analysis of 

the results from LSTM autoencoder/LSTM stacked and 

benchmark models presented in section 4.1 and 4.2 shows that 

the autoencoder is not reducible to a simple dimension 

reduction tool. In contrast, the autoencoder is crucial for 

model performance particularly for RUL forecasting. Even for 

classification where both the stacked and benchmark models 

demonstrate high model performances; the stacked model is 

still preferable as it has shown to be more stable. This means 

that although the performance of the benchmark model can 

fluctuate from one training to the other, that of the stacked 

model remain similar. This demonstrates that in addition to 

efficiently reduce the dimension of the training data set, 

LSTM autoencoder is proved capable of extracting the hidden 

temporal pattern conducting to failure which subsequently 

enables a better learning of either the forecaster or the 

classifier.  

The knowledge of a single slagging date was the one of the 

major challenges of the study. In order to set the conditions 

suitable to train and evaluate the RUL forecasting and 

classification models, we limited the study to two months 

historical data ending on a slagging date. We obtained high 

performance for both RUL forecasting and binary 

classification.  Obviously, complete information would have 

enabled training the model on the complete data and likely 

enable improving its generality. We appeal data owners for 

more effort providing enough information when releasing 

data set for machine learning purposes. Furthermore, in the 

actual work, we consider the dataset from a single boiler to 

train the models due to the intrinsic constraints of the data set. 

However, an interesting step forward could concern 

implementing multiple boilers prediction by developing a 

single general model capable of prediction independently of 

the boilers. This requires knowledge of more slagging dates 

and could be implement following the approach developed by 

[16] for multiple sites forecasting using stacked model which 

has shown state of the art prediction.   

VI. CONCLUSION 

 In this paper, we presented a machine learning approach for 

PdM applied to the challenge of slagging formation 

prediction. The approach is based on a stacked model 

consisting of LSTM autoencoder for feature extraction from 

high correlated multivariate time series data and LSTM NN 

for prediction. The predictor is trained either for both RUL 

forecasting or binary classification. A simple LSTM model is 

presented providing a means to gauge the impact of the 

autoencoder stage of the proposed stacked model. We 

developed in depth data analysis and feature extraction using 

the autoencoder opening route the optimization of collection 

methods. The stacked model demonstrates high performance 

for both RUL forecasting and binary classification. Although 

gingerly optimized the benchmark model less performs 

comparatively the stacked model for RUL forecasting. For 

classification, both models overall demonstrate comparable 

performances. However, the stacked model is observed to be 

more stable highlighting the importance of autoencoder.  

Valuable future works are discussed to move further the 

present study with the aim to develop a multiple sites 

prediction model that can be deployed for maintenance 

planification independently of the boiler.       

APPENDIX: MODEL ARCHITECTURES AND 

HYPERPARAMETERS 

LSTM autoencoder  

Number of cells = LSTM(128)/LSTM(64)/TimeDistributed 

(Dense(32))/ LSTM(64)/ LSTM(128) 

Hyper-parameters: dropout rate = 0.2  

 

Layer (type) Output Shape Parameters 

input_1 (Input Layer) [(12, 114)] 0 

lstm (LSTM) (12, 128)  124416 

lstm_1 (LSTM) (12, 64)  49408 

(a)

(b)
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time_distributed (12, 16) 1040         

lstm_2 (LSTM) (12, 64) 20736      

lstm_3 (LSTM) (12, 128) 98816 

time_distributed_1 (12, 114) 14706 

Total params: 309,122 

Trainable params: 309,122 

Non-trainable params: 0 

 

Optimized LSTM predictor model trained either for RUL or 

Classification. 

Hyper-parameters: dropout_rate = 0.2, 

 number_of_cells = 128/64/1 

class_weight = {0:0.51, 1:23.02} (in the case of 

classification) 
 

Layer (type) Output Shape Parameters 

lstm (LSTM) (12, 128)  74240 

batch_normalization_1  (12, 128) 512        

lstm_1 (LSTM) (64) 49408          

dense (Dense) (1) 65     

Total params: 124,225 

Trainable params: 123,969 

Non-trainable params: 256 

 

Optimized LSTM model 

 

a) RUL forecasting 

 

Hyper-parameters: dropout_rate = 0,  

number_of_cells = 90/90/1 

Layer (type) Output Shape Parameters 

lstm (LSTM) (12, 90)  49680 

batch_normalization_1  (12, 90) 360        

lstm_1 (LSTM) (90) 65160          

Total params: 115,291 

Trainable params: 115,111 

Non-trainable params: 180 

 

b) Classification 

Hyper-parameters: dropout_rate = 0.1, number_of_cells = 

128/32/1 

class_weight = {0:0.51, 1:23.02} 

Layer (type) Output Shape Parameters 

lstm (LSTM) (12, 128)  90112 

batch_normalization_1  (12, 128) 512         

lstm_1 (LSTM) (32) 20608          

dense (Dense) (1) 33     

Total params: 111,265 

Trainable params: 111,009 

Non-trainable params: 256 
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