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Abstract -- Deep learning is a very popular machine 

learning method currently, and it can be used to solve various 

tasks. There are now many open source deep learning tools 

that can build various deep learning network models, such as 

convolutional neural network (CNN) and recurrent neural 

network (RNN), Generative Adversarial Networks(GANs). 

However, deep learning workloads are becoming increasingly 

more compute-intensive, so training deep learning networks is 

usually a very time-consuming process. Almost all deep 

learning frameworks support the use of GPU in order to speed 

up the calculation of deep learning models. This dissertation 

will involve benchmark to analyze the performance of CPU 

and GPU in training deep learning workloads on PARAM 

Shavak Deep Learning GPU. ParaDnn is a micro-benchmark 

for deep learning, which can compare the running time of the 

workloads between various devices. In addition, a simple deep 

learning model is also built to compare the running time 

between one GPU and multiple GPUs. The results of this paper 

demonstrate that running workloads on GPU is faster than 

CPU, and multiple GPUs are faster than one GPU. 

  

I. INTRODUCTION  

Over the last ten years, deep learning has been successfully applied 

in various application fields such as computer vision, image 

classification, speech recognition and natural language processing, 

etc [1]. At the same time, as the amount of data increases, a large 

amount of calculations required for training a deep learning model, 

which often consumes many days or even months. Therefore, 

many methods are applied to optimize their computing 

performance. With the rapid development of GPU from a 

configurable graphics processor to a programmable parallel 

processor, programs are increasingly using the massive parallel 

computing capabilities of GPUs to achieve superior performance 

and efficiency [2]. Today, GPU computing makes it possible for 

applications that we previously thought were impossible to achieve 

due to the long execution time [2]. We hope to build deep learning 

models and run them on the CPU and GPU to obtain running time 

and then analyze the performance of the deep learning workloads 

between various devices by using a benchmark for deep learning. 

 

The goal of this research is to choose an appropriate benchmark to 

analyze the performance between various devices in training deep 

learning workloads. The running time of deep learning models in 

different devices can be used to compare the computing 

performance of CPU and GPU. 

 

In this paper, we focus on analyzing the running time performance 

of FC, RNN and CNN models. This paper could be divided into 

two tasks: 1. Construction of ParaDnn benchmark – ParaDnn is a 

tool that can generate parameterized end-to-end models to run on 

target platforms [3]. Fully connected networks (FC) and recurrent 

neural network were generated by ParaDnn [3]. TensorFlow 

framework was used in this task to build these deep learning 

models. 2. Construction of convolutional neural network based on 

Keras  and Tensorflow– A convolutional neural network was built 

in this task based on Keras, and the dataset for training the model 

is MNIST (Mixed National Institute of Standards and Technology 

database), which is comprised of a training set of 60,000 images 

and a test set of 10,000 images. 

 

The main contribution of this dissertation is the study of different 

benchmarks and analyzing performance of CPU and GPU, Param 

Shavak DL GPU in training deep learning models. In this paper, 

various deep learning models was developed, and they were run on 

CPU and GPU respectively and check their performances. This 

study could provide a simple model of deep learning to compare 

the computing performance of CPU and GPU. 

II. BACKGROUND AND RELATED WORK 

A. Architecture of GPU 

 
NVIDIA is a well-known company that designs and manufactures 

different GPUs. In 2007, NVIDIA released a programming 

technique, which consists of a programming model named 

Compute Unified Device Architecture (CUDA) and a compiler that 

supports the C language with GPU specific extensions for local, 

shared and global memory, texture memory, and multithreaded 

programming [4]. As shown in Figure 1, a GPU is an array of 

streaming multiprocessors (SMs), and each has a number of 

streaming processors (SPs). One GPU device contains multiple 

SMs. GPU can perform more tasks at the same time if there are 

more SMs in the GPU. These SMs are first connected to a shared 

memory (L1 cache), and then they are connected to an L2 cache. 

Each SM needs to access a register file, which is a set of storage 

units that can work at the same speed as SP, so accessing this set of 

storage units requires almost no waiting time [5]. In addition, there 

is a shared memory that is only accessible internally by each SM, 

which can be used as a cache for program management [5]. For 

texture memory, constant memory and global memory, each SM 

has a bus that can access them independently [5]. Texture memory 

is a special view of global memory that is useful for data that has 

interpolation, such as using 2D or 3D lookup tables [5]. It has the 

ability to interpolate based on hardware. Constant memory is used 

to store read-only data, which is cached by all GPU cards [5]. Like 

texture memory, constant memory is also a view of global memory 

[5]. 
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Fig.1: Block diagram of a GPU card 

 

 

B. GPU Computing Capability 

 

As given in [6], GPUs have higher computational power than 

CPUs, and the divergence of CPU and GPU computational power 

is becoming larger. The main reason of the divergence between 

CPU and GPU is fundamental architectural differences [6]. Data 

parallel in graphics computing allows GPUs to use additional 

transistors for calculations more directly, achieving higher 

arithmetic intensity with the same number of transistor count [6]. 

Thus, GPUs are widely used in accelerating computing for 

complicated projects. There are many deep learning frameworks 

that can run on both CPU and GPU, such as TensorFlow, PyTorch 

and Keras, Caffe2, MxNet. In this study, Param Shavak DL GPU 

was used to accelerate deep learning workloads based on 

TensorFlow and Keras. 

 

C. Benchmarks Survey 

1) DeepBench 
The primary purpose of DeepBench is to benchmark operations 

that are important to deep learning on different hardware platforms. 

Although the fundamental computations behind deep learning are 

well understood, the way they are used in practice can be 

surprisingly diverse. For example, a matrix multiplication may be 

compute-bound, bandwidth-bound, or occupancy-bound, based on 

the size of the matrices being multiplied and the kernel 

implementation. Because every deep learning model uses these 

operations with different parameters, the optimization space for 

hardware and software targeting deep learning is large and under 

specified[15]. 

 

2) tf_cnn_benchmarks 
tf_cnn_benchmarks contains TensorFlow 1 implementations of 

several popular convolutional models, and is designed to be as fast 

as possible. tf_cnn_benchmarks supports both running on a single 

machine or running in distributed mode across multiple hosts[26]. 

 

3) DawnBench 
DAWNBench is a benchmark suite for end-to-end deep learning 

training and inference. Computation time and cost are critical 

resources in building deep models, yet many existing benchmarks 

focus solely on model accuracy. DAWNBench provides a 

reference set of common deep learning workloads for quantifying 

training time, training cost, inference latency, and inference cost 

across different optimization strategies, model architectures, 

software frameworks, clouds, and hardware. Building on our 

experience with DAWNBench, we helped create MLPerf as an 

industry-standard for measuring machine learning system 

performance[16]. 

 

4) ParaDNN 
ParaDnn is a tool that generates parameterized deep neural network 

models. It provides large “end-to-end” models covering current 

and future applications, and parameterizing the models to explore a 

much larger design space of DNN model attributes[32]. 

 

5) AI Bench 
AIBench adopts a scenario-distilling AI Benchmarking 

methodology. Instead of using real-world applications, we propose 

the permutations of essential AI and non-AI tasks as a scenario-

distilling benchmark (in short, scenario benchmark). Each scenario 

benchmark is a distillation of the essential attributes of an industry-

scale application, and hence reduces the side effect of the latter’s 

complexity in terms of huge code size, extreme deployment scale, 

and complex execution paths. We consider scenario, component 

and micro benchmarks as three indispensable parts of a benchmark 

suite[21][31]. 

 

6) MLPerf 
 

MLPerf was built for fair and useful benchmarks for measuring 

training and inference performance of ML hardware, software, and 

services[22]. 

 

7) Fathom 
 

Fathom is a collection of eight archetypal deep learning workloads 

for study. Each of these models comes from a seminal work in the 

deep learning community, ranging from the familiar deep 

convolutional neural network of Krizhevsky et al., to the more 

exotic memory networks from Facebook's AI research group[23]. 

 

8) BigDataBench 
 

BigDataBench 5.0 provides 13 representative real-world data sets 

and 27 big data benchmarks. The benchmarks cover six workload 

types including online services, offline analytics, graph analytics, 

data warehouse, NoSQL, and streaming from three important 

application domains, Internet services (including search engines, 

social networks, e-commerce), recognition sciences, and medical 

sciences. Our benchmark suite includes micro benchmarks, each of 

which is a single data motif, components benchmarks, which 

consist of the data motif combinations, and end-to-end application 

benchmarks, which are the combinations of component 

benchmarks[17],[24]. 

 

9) PerfZero 
 

PerfZero is a benchmark framework for TensorFlow. It intends to 

address the following use-cases - For users who want to execute 

TensorFlow test to debug performance regression. 

PerfZero makes it easy to execute the predefined test by 

consolidating the docker image build, GPU driver installation, 

TensorFlow installation, benchmark library checkout, data 

download, system statistics collection, benchmark metrics 

collection, profiler data collection and so on into 2 to 3 commands. 

This allows developer to focus on investigating the issue rather 

than setting up the test environment - For user who wants to track 

the performance change of TensorFlow for a variety of setup (e.g. 

GPU model, cudnn version, TensorFlow version)[22] 

 

10) DLBS (HP)  
 

Deep Learning Benchmarking Suite (DLBS) is a collection of 

command line tools for running consistent and reproducible deep 

learning benchmark experiments on various hardware/software 

platforms. Deep Learning Benchmarking Suite was tested on 

various servers with Ubuntu / RedHat / CentOS operating systems 

https://mlperf.org/
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with and without NVIDIA GPUs. We have a little success with 

running DLBS on top of AMD GPUs, but this is mostly untested. 

It may not work with Mac OS due to slightly different command 

line API of some of the tools we use (like, for instance, sed) - we 

will fix this in one of the next releases[25]. 

 

11) Training Benchmark Suite(TBD) 
TBD is a Benchmarking Suite for DNN training which covers six 

major applications by performing extensive performance analysis 

of training these different applications on three major deep learning 

frameworks (TensorFlow, MXNet, CNTK) across different 

hardware configurations (single-GPU, multi-GPU, and multi-

machine)[29]. 

 

12) Intel MPI Benchmark 
This Benchmark is used to compare and evaluate the combined 

performance of processor, memory subsystem and interconnect 

fabric[30]. 

 

13) BenchIP and BenchNN 

Use to design intelligence processors architecture and 

neural network workloads[27],[28]. 

 

D. Training and Inference 

 

Training a DNN requires a very large labelled data set and network 

architecture that will learn features and model. This might take 

hours to weeks depending on the dataset, computational power and 

algorithms that are used for training. The trained neural network 

uses what it has learned to recognize images, spoken words, or 

suggest new stuff someone is likely to buy next. This faster and 

efficient version of a neural network infers things about new data it 

is presented based on its training. 

 

In inference it uses this learn knowledge for most of the part. 

Inference does not require all the infrastructure of its training to do 

its task well. While training DNN , training data is put into the 

input  layer of the network, and individual neurons assign a 

weighting to the input based on the task being performed. The term 

deep refers to number of hidden layers in the neural network. 

Traditional neural networks only contain 2-3 hidden layers, while 

deep networks can have as many as 150. 

 

In an image identification network, the first layer might look for 

edges. The second might look for how these edges form shapes. 

The third might look for particular features and so on. Each layer 

passes the image to the next, until the final layer and the final 

output determined by the total of all those weightings is produced. 

 

Many deep learning applications use the transfer learning 

approach, which uses pre-trained model, where it starts with an 

existing network, such as AlexNet, VGG16, Mask R-CNN or 

GoogleNet, and give in new data containing previously unknown 

classes. After making some adjustments to the network, you can 

now perform a new task, such as classifying only dogs or cats 

instead of 1000 different objects. This gives the advantage of 

needing much less data processing thousands of images, rather 

than millions, so computation time drops to minutes or hours. 

 

1) How inference works? 
First approach it looks for the parts that are not activated after it 

is trained. These parts not needed and can be pruned away. The 

second approach looks for ways to fuse multiple layers of the 

neural network into a single computational step, which means we 

use inference all the time. For example Google, Facebook, Baidu, 

Amazon and Netflix uses inference for different applications. 

 

GPUs have the parallel computing capabilities I.e. the ability to do 

multiple things at once are good at both training and inference. 

After training the models are deploy for classifying data to infer a 

result.  Here as well, GPUs are used, where they run billions of 

computations based on the trained network to identify known 

patterns or objects. 

E. CPU vs GPU General Performance 

 

It is clear that architectural performance of CPU and GPU provide 

different performance Sometime CPU gives better performance 

than GPU and sometimes GPU gives better performance than CPU 

,however better here is relative to the application CPU and GPU 

will be used and they both function very differently. 

 

CPU's are powerful and that is the reason computer can do any task 

and they are more flexible than GPUs, they include a larger 

instruction set, they run at higher clock speeds, perform IO 

operations and also they are responsible for integration with virtual 

memory which GPU cannot do. CPU's perform their tasks 

sequentially I.e. one task at a time.  

 

Contrary, GPUs are optimized to display graphics and to do 

specific computational tasks. GPUs perform fraction of the 

operations with a very high speed due to its lower clock speeds, 

which makes it useful for image processing. GPU uses its hundred 

of cores to perform time sensitive calculations for thousand of 

pixels at a time, thus be able to display any type of images as well 

including complex 3D graphics as well because of its architecture 

to perform multiple parallel operations at time. It needs 

mathematical operations to be done during processing of images. 

F. CPU vs GPU Deep Learning Performance 

 

As given above ,CPU's have larger instruction set than GPUs 

making GPUs less flexible , however GPUs are said to be 

dedicated for parallel computing even for same instructions. Deep 

Neural Networks (DNN) are structured in a very uniform manner 

such that at each layer of the network thousands of identical 

artificial neurons perform the same computation. Therefore, its 

way of computation is quite similar to how GPU computes 

instructions. 

 

As specified, image processing is an expensive task that requires 

many calculations and since GPUs have more computational units 

and have a higher bandwidth to retrieve from memory ,GPUs 

perform quite well in that task with high speed as well,deep 

learning includes massive image processing operations with large 

data sets making parallelism a needed feature in deep learning 

computing . 

 

The main weakness of GPUs as compared to CPU's is memory 

capacity I.e. GPUs are lower than CPU's. The highest known GPU 

contains 24GB of RAM, in contrast, CPU's can reach 1TB of 

RAM. A second weakness is that a CPU is required to transfer data 

into the GPU card. CPU helps to feed GPU with enough data and 

read/write files from/to RAM/HDD during training. If the CPU is 

weak, it can only feed as few data as possible thus cannot keep up 

with your powerful GPU. Ideally Deep Learning training systems 

should have CPU with maximum number of processing cores to 

handle more work to catch up with a GPU. In addition, GPU clock 

speeds are 1/3rd that of high end CPU's, so on sequential 

operations won’t be as fast as if they were processed using a CPU. 

 

However, GPUs are so efficient and fast in matrix multiplication 

and convolution due to parallelism  and memory bandwidth. CPU's 

are latency optimized while GPUs are bandwidth optimized. CPU 

can fetch small amounts of memory much faster than GPU which 

can fetch large amount of memory at slower rate. This means 

larger computational operations, the more advantages of GPUs 

over CPU's. But, GPUs are not latency optimized which might 

affect the GPUs performance. However this problem was solved 

by thread parallelism. By this we can say that GPUs provide best 

memory bandwidth while having no drawback due to latency when 
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thread parallelism is used.This is one of the main reasons why 

GPUs are faster than CPUs for deep learning. 

 

One more benefit of GPUs is that they consist of a small pack of 

registers for every processing unit ,therefore a lot of register 

memory which is small and fast, this provides GPUs with registers 

size more than 30 times bigger compared to CPUs but yet very fast 

.This difference in size is much more important than difference in 

speed and it does not make a difference. And a good compiler tools 

that can exactly indicate when we are using too much or too few 

registers ,maximal performance is sure guaranteed. 

 

This finally leads to the conclusion that we can store a lot of data 

on register files on GPUs ,in order to be able to reuse convolutional 

and matrix multiplication tiles. You have a 100MB matrix, you can 

split it up in smaller matrices that fit into your cache and registers, 

and then do matrix multiplication with three matrix tiles at 

speeds.That is again why GPUs are much faster than CPUs in deep 

learning which requires a lot of matrix multiplications. To sum up, 

High bandwidth ,hiding memory access latency under thread 

parallelism and having large and fast register files that can be 

easily programmable , makes GPUs more fit when it comes to deep 

learning. 

III. DEEP LEARNING FRAMEWORKS 

 

A. TensorFlow 

 

TensorFlow is a popular machine learning system that is widely 

used for building various neural network models and deep learning 

models. TensorFlow integrates the most common units in deep 

learning frameworks and supports many latest networks with 

different settings, such as CNN and RNN [1]. TensorFlow supports 

both large scale training and inference and it can effectively use 

many powerful servers such as GPU for rapid training [7]. 

TensorFlow source code contains a file named Stream Executor 

[8], which can call CUDA platform to use GPU. 

 

B. Keras 

Keras is a deep learning API written in Python, running on top of 

the machine learning platform TensorFlow [9]. It was developed 

with a focus on enabling fast experimentation [9]. 

 

C. PyTorch 

 

PyTorch, the biggest competitor for Tensor Flow is developed by 

Facebook and written in Python, C, and CUDA. PyTorch is based 

on Torch, an open source machine learning library written in Lua. 

This Python-first framework integrates Python and allows the use 

of any Python library to build neural network layers [33].  

 

D. Caffe2 

Caffe is deep learning framework developed by the Berkeley AI 

Research (BAIR) team. Caffe stands for Convolutional 

Architecture for Fast Feature Embedding. It is written in C++ and 

has a Python interface as well[34].  

 

E. Microsoft CNTK 

The Microsoft Cognitive Toolkit – an open-source DL framework 

created to deal with big datasets and to support Python, C++, C#, 

and Java.CNTK facilitates really efficient training for voice, 

handwriting, and image recognition, and supports both CNNs and 

RNNs. It is used in Skype, Xbox and Cortana[35]. 

 

 

IV. PARAM SHAVAK ARCHITECTURE 

 

The system consists of 2 multicore CPUs each with minimum 12 

cores along with two number of accelerator cards. The entire 

configuration is available in a single server in a table top model. 

Regardless to the traditional HPC systems/supercomputers, this 

system does not require specific support infrastructure like 

precision air-conditioned environment, controlled humidity etc. 

Also, the accepted sound level is very less when compared to the 

traditional servers. This brings down the infrastructure cost of the 

system[12],[14]. 

 

 
 

Fig. 2:  Block diagram of PARAM Shavak [14] 

 

 

A. PARAM Shavak DL GPU 

 

C-DAC's Deep Learning development - supercomputer in a box, 

"PARAM SHAVAK DL GPU System" exclusively designed for 

academic institutions and research organizations that employ deep 

learning techniques for GPU accelerated machine learning 

applications, big data problems (computer vision, speech 

recognition, natural language processing, life sciences) and 

artificial intelligence. Equipped with x86 based latest Intel 

processor, 64 GB RAM, 8 TB storage, NVIDIA Pascal architecture 

based co-processing technologies (P5000/P6000) and DLGPU 

software environment (with Deep Learning GPU accelerated 

libraries and SDK)enabling a new computing platform that's 

disrupting conventional thinking from the desk-side to the data 

center. With NVIDIA Pascal architecture inside, the system 

delivers unprecedented performance up to 25TeraFLOPS of single 

precision performance for deep learning workloads and enhanced 

application scalability [14]. 

 

V. BENCHMARK 

 

In order to assess the acceleration effect of GPU on deep learning 

applications, the benchmark is required. There are many deep 

learning benchmarks, such as DAWN Bench and MLPerf. 

DAWNBench is a benchmark that measures end-to-end training 

time to achieve a state-of-the-art accuracy level, as well as 

inference time with that accuracy [10]. MLPerf is a benchmark 

contains sub-items in different fields, including image 

classification, object recognition, translation, recommendation, 
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speech recognition, sentiment analysis, and reinforcement learning 

[11]. 

 

A. Methodology 

 

This describes the main method of the project which is in two 

sections. In the first section, fully connected and recurrent neural 

networks models are constructed by ParaDnn. We run these two 

models on CPU and GPU of PARAM Shavak respectively. The 

second section describes the construction of the convolutional 

neural network models based on Keras. We run this model on 

CPU, single GPU and Param Shavak DL GPU respectively, and 

also run the models on the laptop. 

 

1) ParaDnn 
ParaDnn can create fully connected and recurrent neural network 

models. These models are parameterizable, so ParaDnn models are 

equal to or greater in size compared to today’s real-world models 

[3]. 

 

B. Construction of fully connected models 

FC models are comprised of multiple fully-connected layers. The 

architecture of FC is 

 

Input---> [Layer[Node]] ---> Output, 

 

where [Layer] means the number of layers is variable. We can 

change the number of layers, the number of nodes per layer, and 

the numbers input and output units of the data sets. 

 

The neural network can be regarded as a black box that can fit any 

function. As long as the training data is sufficient, given a specific 

x, we can get the desired y. Fully connected means that each 

neuron in the Nth layer is connected to each neuron in the N-1th 

layer, and each connection has a weight. As shown in the figure 3, 

there are 2 nodes in the input layer numbered 1 and 2. The hidden 

layer also has two nodes numbered 3 and 4. The output layer has 

two nodes numbered 5 and 6, b1 and b2 are bias nodes. wji 

represents the weight between the j-th node (unbiased node located 

at the Nth layer) and the i-th node (unbiased node located at the N-

1th layer), where j is the target node and i is the source node. wjb 

represents the weight between the j-th node (the unbiased node at 

the Nth layer) and the biased node at the upper layer. aj represents 

the output value of the j-th node. 

 

Taking node 3 as an example, the input value of node 3 is 

w31x1 + w32x2 + w3b, 

and the output value of node 3 is 

a3 = σ(w31x1 + w32x2 + w3b), 

where σ is the activation function. 

 

 
 

 

Fig.3: The structure of fully connected neural network 

 

C. Construction of Recurrent Neural Network Models 

 

The fully connected neural network can only take one input after 

another, and the previous input is completely unrelated to the next 

input. However, some tasks need to be able to better process the 

sequence information, that is, the previous input and the 

subsequent input are related, such as continuous speech and 

continuous hand written text. RNN is good at this kind of problem. 

Figure 4 shows the structure of RNN. On the left is the RNN 

model that is not expanded by time, the right part of the Figure 4 is 

the RNN model that is expanded by time series. Here, x(t) 

represents the input of the training sample at the sequence index 

number t. h(t) represents the hidden state of the model at the 

sequence index number t, which is determined jointly by x(t) and 

h(t=1). o(t) represents the output 

of the model at the sequence index number t and is only 

determined by the current hidden state h(t) of the model. L(t) 

represents the loss function of the model at the sequence index 

number t. The three matrices U, V and W are the linear 

relationship parameters of the model, and they are shared 

throughout the RNN. For any sequence index number t, the hidden 

state h(t) is obtained from x(t) and h(t=1) , that is: 

h(t) = σ(z(t)) = σ(Ux(t) + Wh(t=1) + b), 

where σ is the activation function of the RNN, and b is the bias. 

When the serial index number is t, the expression of the model o(t) 

is: 

o(t) = Vh(t) + c 

The prediction output for the final sequence index number t is: 

yˆ(t) = σ(o(t)) 

The loss function L(t) such as the log-likelihood loss function can 

quantify the loss of the model at the current position, that is, the 

difference between yˆ(t) and y(t). In this report,each token of the 

input sequence is embedded within a fixed length vector, and the 

length of the vector is the embedding size. We can change the 

number of layers and the embedding size. We can also change the 

batch size, which is the number of samples selected in one training. 

The variables in the dataset include the maximum length per input 

sequence and vocabulary size. 

 

 
 

Fig.4: The structure of recurrent neural network[13] 

 

Run this on the CPU and GPU of Param Shavak and also on laptop 

and write the results to a file to analyze it later. The parameters of 

models running on the GPU are same as running on the CPU. 

 

VI. CNN AND KERAS 

 

Convolutional neural network is a hierarchical model whose input 

is raw data, such as images. The convolutional neural network 

extracts high-level semantic information from the original data 

through a series of operations such as convolution operation, 

pooling operation and nonlinear activation function mapping 

operation. Different types of operations are generally called layers 

in convolutional neural networks: convolution operations 

correspond to convolutional layers, and pooling operations 

correspond to pooling layers. Finally, the last layer of the 

convolutional neural network formalizes its target tasks 

(classification or regression) into an objective function. Figure 

shows the structure of the convolutional neural network. 
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A. Construction of  Convolutional Neural Network Models 

 

This example is a convolutional neural network built by Keras. 

There are many datasets in Keras that can be used to train CNN. 

Here we use MNIST dataset, which is a database containing 

60,000 handwritten digit pictures that is commonly used for 

training various image processing systems. We built the following 

network architecture in our project: 

 

[Convolution]2-[Maxpooling]-[Fully Connected]2 

 

 

We want to train CNN to implement handwritten digit recognition 

and classification. First, build two convolutional layers using 

Conv2D function, which can extract features from 28 ∗  28 pixels 

pictures. Next, build a pooling layer by MaxPooling2D to 

compress the input features, which can simplify network 

computing complexity. Then, build two fully connected layers 

using Dense function, which can connect all the features and send 

the output value to the classifier. When a complete data set passes 

through the neural network once and returns once, this process is 

called an epoch. It is not enough to transfer the complete dataset 

once in the neural network, and we need to pass the complete data 

set multiple times in the same neural network. In this project, the 

epochs of the CNN model are 20. 

 

B. Run on CPU and GPU 

 

First, run the model on the CPU of PARAM Shavak. Then, run the 

model on DL GPU of PARAM Shavak by modifying parameters. 

Finally, run the model on the laptop, which has an Intel i7-6700HQ 

CPU and a NVIDIA GTX950M GPU. 

 

VII. EXPECTED RESULTS 

 

This  includes the evaluation methods and evaluation results of FC 

models, RNN models and CNN models. The evaluation method is 

to compare the running time of the same model on both CPU and 

GPU. 

 

A. Results of ParaDnn 

For fully connected models, 

Parameters = (layer + 1) * (node * node + node) 

Speedups = (the running time on CPU) / (the running time on 

GPU) 

 

 The speedups of FC models have large ranges, from 1 to 10. The 

running time of GPU is much less than the running time of CPU. 

As the complexity of the model increases, the effect of GPU 

acceleration becomes more significant. For FC models, GPU is a 

better platform as its architecture can perform large scale 

parallelism calculations. In addition, FC models rarely reuse 

weights and large models have more parameters, so they put a lot 

of pressure on the storage system [3]. The memory bandwidth of 

the GPU is higher, so running FC models on GPU is faster than 

CPU. 

  

For RNN,  

Parameters = vocabulary size * (2 * embedding + 1) + 601 * 

embedding * layer 

Speedups = (the running time on CPU) / (the running time on 

GPU) 

 

It is obvious that the running time of GPU is much less than the 

running time of CPU. Batch size is the number of samples selected 

in one training. The batch size has a great influence on the speed of 

models. As the batch sizes of the model increases, the effect of 

GPU acceleration becomes more significant. This is mainly 

because increasing the batch size can improve memory utilization 

through parallelization. 

 

B. Results of Keras 

 

 This gives that the GPU has a significant acceleration effect on 

computing, and the more GPUs used, the shorter the running time. 

The result of running the CNN model on the laptop with an Intel 

i7-6700HQ CPU and a NVIDIA GTX950M GPU is the running 

time of an epoch of the model on the CPU is about 70 seconds, and 

the running time on the GPU is about 20 seconds. It can be seen 

that the divergence between the GPU and CPU running time on the 

laptop is still very large. However, it can be seen that the running 

time on the GPU of the laptop is a little longer than the running 

time of the CPU on the Param Shavak DL GPU. This shows that 

not all GPUs are faster than CPUs because it depends on the 

computing capability of the hardware. Generally speaking, the 

computing capability of the GPU on a computer is faster than the 

computing capability of the CPU on this computer. The hardware 

equipment of different platforms is different. For example, the 

hardware performance of the server is much stronger than that of 

the laptop. Thus, we can use GPUs that have higher computing 

capabilities to accelerate computation and reduce running time 

 

The GPU is composed of thousands of streaming processors, and 

single instruction multi-thread (SIMT) mode is used for execution. 

There are three dimensions in CUDA programming: grids, blocks 

and threads. A large number of threads form a block, and a large 

number of blocks form a grid. All threads in each block perform 

the same operation. If two 1000-element matrices are added 

together, 1000 threads will be started on the GPU, and one 

instruction is executed on 1000 threads at a time. Compared with 

the single-core CPU pipelined serial operation, simultaneous 

calculation through a large number of threads will obtain a 

considerable acceleration effect when the amount of data is very 

large, although the computing power of a single core of the GPU is 

weak. For CNN, the use of GPU acceleration is mainly in the 

convolution process, and the convolution process can be 

parallelized by CUDA like the vector addition. NVIDIA provides 

the cuDNN library. The deep learning framework implements the 

core operations of CNN and RNN models by passing tensors and 

calling the cuDNN library. 

 

VIII. CONCLUSION AND FUTURE WORK 

 

This provides a benchmark analysis comparing the performance of 

GPU and CPU on deep learning workloads. We use ParaDnn and 

Keras to build up frequently used deep learning models, and we 

compare the performance of CPU, multiple GPUs. Generally, 

running workloads on GPU is faster than CPU and use of  two 

GPUs can also reduce the running time compared to only one 

GPU. Not all GPUs are faster than CPUs, it depends on the device 

computing capabilities. Also scaling workload on-node GPUs is 

extremely important. The performance of deep learning algorithms 

is determined by the structure of the model, using of the perfect 

hardware and the large available datasets for the training. 

However, this project still has some limitations. The models we 

used are too simple, and the datasets are not complicated enough. 

The number of hardware platforms is not enough. In future, we 

need to find more benchmarks with more datasets(image or video), 

and compare the running time, accuracy, latency of inference with 

different algorithms, systems on more hardware platforms. 
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