
International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 5 www.erpublication.org

A study of Machine Learning Workloads on

different hardware and Benchmarks for deep

learning

Sayali S Pangre, Aditya K Sinha, Milind Bhandare

Abstract -- Deep learning is a very popular machine

learning method currently, and it can be used to solve various

tasks. There are now many open source deep learning tools

that can build various deep learning network models, such as

convolutional neural network (CNN) and recurrent neural

network (RNN), Generative Adversarial Networks(GANs).

However, deep learning workloads are becoming increasingly

more compute-intensive, so training deep learning networks is

usually a very time-consuming process. Almost all deep

learning frameworks support the use of GPU in order to speed

up the calculation of deep learning models. This dissertation

will involve benchmark to analyze the performance of CPU

and GPU in training deep learning workloads on PARAM

Shavak Deep Learning GPU. ParaDnn is a micro-benchmark

for deep learning, which can compare the running time of the

workloads between various devices. In addition, a simple deep

learning model is also built to compare the running time

between one GPU and multiple GPUs. The results of this paper

demonstrate that running workloads on GPU is faster than

CPU, and multiple GPUs are faster than one GPU.

I. INTRODUCTION

Over the last ten years, deep learning has been successfully applied

in various application fields such as computer vision, image

classification, speech recognition and natural language processing,

etc [1]. At the same time, as the amount of data increases, a large

amount of calculations required for training a deep learning model,

which often consumes many days or even months. Therefore,

many methods are applied to optimize their computing

performance. With the rapid development of GPU from a

configurable graphics processor to a programmable parallel

processor, programs are increasingly using the massive parallel

computing capabilities of GPUs to achieve superior performance

and efficiency [2]. Today, GPU computing makes it possible for

applications that we previously thought were impossible to achieve

due to the long execution time [2]. We hope to build deep learning

models and run them on the CPU and GPU to obtain running time

and then analyze the performance of the deep learning workloads

between various devices by using a benchmark for deep learning.

The goal of this research is to choose an appropriate benchmark to

analyze the performance between various devices in training deep

learning workloads. The running time of deep learning models in

different devices can be used to compare the computing

performance of CPU and GPU.

In this paper, we focus on analyzing the running time performance

of FC, RNN and CNN models. This paper could be divided into

two tasks: 1. Construction of ParaDnn benchmark – ParaDnn is a

tool that can generate parameterized end-to-end models to run on

target platforms [3]. Fully connected networks (FC) and recurrent

neural network were generated by ParaDnn [3]. TensorFlow

framework was used in this task to build these deep learning

models. 2. Construction of convolutional neural network based on

Keras and Tensorflow– A convolutional neural network was built

in this task based on Keras, and the dataset for training the model

is MNIST (Mixed National Institute of Standards and Technology

database), which is comprised of a training set of 60,000 images

and a test set of 10,000 images.

The main contribution of this dissertation is the study of different

benchmarks and analyzing performance of CPU and GPU, Param

Shavak DL GPU in training deep learning models. In this paper,

various deep learning models was developed, and they were run on

CPU and GPU respectively and check their performances. This

study could provide a simple model of deep learning to compare

the computing performance of CPU and GPU.

II. BACKGROUND AND RELATED WORK

A. Architecture of GPU

NVIDIA is a well-known company that designs and manufactures

different GPUs. In 2007, NVIDIA released a programming

technique, which consists of a programming model named

Compute Unified Device Architecture (CUDA) and a compiler that

supports the C language with GPU specific extensions for local,

shared and global memory, texture memory, and multithreaded

programming [4]. As shown in Figure 1, a GPU is an array of

streaming multiprocessors (SMs), and each has a number of

streaming processors (SPs). One GPU device contains multiple

SMs. GPU can perform more tasks at the same time if there are

more SMs in the GPU. These SMs are first connected to a shared

memory (L1 cache), and then they are connected to an L2 cache.

Each SM needs to access a register file, which is a set of storage

units that can work at the same speed as SP, so accessing this set of

storage units requires almost no waiting time [5]. In addition, there

is a shared memory that is only accessible internally by each SM,

which can be used as a cache for program management [5]. For

texture memory, constant memory and global memory, each SM

has a bus that can access them independently [5]. Texture memory

is a special view of global memory that is useful for data that has

interpolation, such as using 2D or 3D lookup tables [5]. It has the

ability to interpolate based on hardware. Constant memory is used

to store read-only data, which is cached by all GPU cards [5]. Like

texture memory, constant memory is also a view of global memory

[5].

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 6 www.erpublication.org

Fig.1: Block diagram of a GPU card

B. GPU Computing Capability

As given in [6], GPUs have higher computational power than

CPUs, and the divergence of CPU and GPU computational power

is becoming larger. The main reason of the divergence between

CPU and GPU is fundamental architectural differences [6]. Data

parallel in graphics computing allows GPUs to use additional

transistors for calculations more directly, achieving higher

arithmetic intensity with the same number of transistor count [6].

Thus, GPUs are widely used in accelerating computing for

complicated projects. There are many deep learning frameworks

that can run on both CPU and GPU, such as TensorFlow, PyTorch

and Keras, Caffe2, MxNet. In this study, Param Shavak DL GPU

was used to accelerate deep learning workloads based on

TensorFlow and Keras.

C. Benchmarks Survey

1) DeepBench
The primary purpose of DeepBench is to benchmark operations

that are important to deep learning on different hardware platforms.

Although the fundamental computations behind deep learning are

well understood, the way they are used in practice can be

surprisingly diverse. For example, a matrix multiplication may be

compute-bound, bandwidth-bound, or occupancy-bound, based on

the size of the matrices being multiplied and the kernel

implementation. Because every deep learning model uses these

operations with different parameters, the optimization space for

hardware and software targeting deep learning is large and under

specified[15].

2) tf_cnn_benchmarks
tf_cnn_benchmarks contains TensorFlow 1 implementations of

several popular convolutional models, and is designed to be as fast

as possible. tf_cnn_benchmarks supports both running on a single

machine or running in distributed mode across multiple hosts[26].

3) DawnBench
DAWNBench is a benchmark suite for end-to-end deep learning

training and inference. Computation time and cost are critical

resources in building deep models, yet many existing benchmarks

focus solely on model accuracy. DAWNBench provides a

reference set of common deep learning workloads for quantifying

training time, training cost, inference latency, and inference cost

across different optimization strategies, model architectures,

software frameworks, clouds, and hardware. Building on our

experience with DAWNBench, we helped create MLPerf as an

industry-standard for measuring machine learning system

performance[16].

4) ParaDNN
ParaDnn is a tool that generates parameterized deep neural network

models. It provides large “end-to-end” models covering current

and future applications, and parameterizing the models to explore a

much larger design space of DNN model attributes[32].

5) AI Bench
AIBench adopts a scenario-distilling AI Benchmarking

methodology. Instead of using real-world applications, we propose

the permutations of essential AI and non-AI tasks as a scenario-

distilling benchmark (in short, scenario benchmark). Each scenario

benchmark is a distillation of the essential attributes of an industry-

scale application, and hence reduces the side effect of the latter’s

complexity in terms of huge code size, extreme deployment scale,

and complex execution paths. We consider scenario, component

and micro benchmarks as three indispensable parts of a benchmark

suite[21][31].

6) MLPerf

MLPerf was built for fair and useful benchmarks for measuring

training and inference performance of ML hardware, software, and

services[22].

7) Fathom

Fathom is a collection of eight archetypal deep learning workloads

for study. Each of these models comes from a seminal work in the

deep learning community, ranging from the familiar deep

convolutional neural network of Krizhevsky et al., to the more

exotic memory networks from Facebook's AI research group[23].

8) BigDataBench

BigDataBench 5.0 provides 13 representative real-world data sets

and 27 big data benchmarks. The benchmarks cover six workload

types including online services, offline analytics, graph analytics,

data warehouse, NoSQL, and streaming from three important

application domains, Internet services (including search engines,

social networks, e-commerce), recognition sciences, and medical

sciences. Our benchmark suite includes micro benchmarks, each of

which is a single data motif, components benchmarks, which

consist of the data motif combinations, and end-to-end application

benchmarks, which are the combinations of component

benchmarks[17],[24].

9) PerfZero

PerfZero is a benchmark framework for TensorFlow. It intends to

address the following use-cases - For users who want to execute

TensorFlow test to debug performance regression.

PerfZero makes it easy to execute the predefined test by

consolidating the docker image build, GPU driver installation,

TensorFlow installation, benchmark library checkout, data

download, system statistics collection, benchmark metrics

collection, profiler data collection and so on into 2 to 3 commands.

This allows developer to focus on investigating the issue rather

than setting up the test environment - For user who wants to track

the performance change of TensorFlow for a variety of setup (e.g.

GPU model, cudnn version, TensorFlow version)[22]

10) DLBS (HP)

Deep Learning Benchmarking Suite (DLBS) is a collection of

command line tools for running consistent and reproducible deep

learning benchmark experiments on various hardware/software

platforms. Deep Learning Benchmarking Suite was tested on

various servers with Ubuntu / RedHat / CentOS operating systems

https://mlperf.org/

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 7 www.erpublication.org

with and without NVIDIA GPUs. We have a little success with

running DLBS on top of AMD GPUs, but this is mostly untested.

It may not work with Mac OS due to slightly different command

line API of some of the tools we use (like, for instance, sed) - we

will fix this in one of the next releases[25].

11) Training Benchmark Suite(TBD)
TBD is a Benchmarking Suite for DNN training which covers six

major applications by performing extensive performance analysis

of training these different applications on three major deep learning

frameworks (TensorFlow, MXNet, CNTK) across different

hardware configurations (single-GPU, multi-GPU, and multi-

machine)[29].

12) Intel MPI Benchmark
This Benchmark is used to compare and evaluate the combined

performance of processor, memory subsystem and interconnect

fabric[30].

13) BenchIP and BenchNN

Use to design intelligence processors architecture and

neural network workloads[27],[28].

D. Training and Inference

Training a DNN requires a very large labelled data set and network

architecture that will learn features and model. This might take

hours to weeks depending on the dataset, computational power and

algorithms that are used for training. The trained neural network

uses what it has learned to recognize images, spoken words, or

suggest new stuff someone is likely to buy next. This faster and

efficient version of a neural network infers things about new data it

is presented based on its training.

In inference it uses this learn knowledge for most of the part.

Inference does not require all the infrastructure of its training to do

its task well. While training DNN , training data is put into the

input layer of the network, and individual neurons assign a

weighting to the input based on the task being performed. The term

deep refers to number of hidden layers in the neural network.

Traditional neural networks only contain 2-3 hidden layers, while

deep networks can have as many as 150.

In an image identification network, the first layer might look for

edges. The second might look for how these edges form shapes.

The third might look for particular features and so on. Each layer

passes the image to the next, until the final layer and the final

output determined by the total of all those weightings is produced.

Many deep learning applications use the transfer learning

approach, which uses pre-trained model, where it starts with an

existing network, such as AlexNet, VGG16, Mask R-CNN or

GoogleNet, and give in new data containing previously unknown

classes. After making some adjustments to the network, you can

now perform a new task, such as classifying only dogs or cats

instead of 1000 different objects. This gives the advantage of

needing much less data processing thousands of images, rather

than millions, so computation time drops to minutes or hours.

1) How inference works?
First approach it looks for the parts that are not activated after it

is trained. These parts not needed and can be pruned away. The

second approach looks for ways to fuse multiple layers of the

neural network into a single computational step, which means we

use inference all the time. For example Google, Facebook, Baidu,

Amazon and Netflix uses inference for different applications.

GPUs have the parallel computing capabilities I.e. the ability to do

multiple things at once are good at both training and inference.

After training the models are deploy for classifying data to infer a

result. Here as well, GPUs are used, where they run billions of

computations based on the trained network to identify known

patterns or objects.

E. CPU vs GPU General Performance

It is clear that architectural performance of CPU and GPU provide

different performance Sometime CPU gives better performance

than GPU and sometimes GPU gives better performance than CPU

,however better here is relative to the application CPU and GPU

will be used and they both function very differently.

CPU's are powerful and that is the reason computer can do any task

and they are more flexible than GPUs, they include a larger

instruction set, they run at higher clock speeds, perform IO

operations and also they are responsible for integration with virtual

memory which GPU cannot do. CPU's perform their tasks

sequentially I.e. one task at a time.

Contrary, GPUs are optimized to display graphics and to do

specific computational tasks. GPUs perform fraction of the

operations with a very high speed due to its lower clock speeds,

which makes it useful for image processing. GPU uses its hundred

of cores to perform time sensitive calculations for thousand of

pixels at a time, thus be able to display any type of images as well

including complex 3D graphics as well because of its architecture

to perform multiple parallel operations at time. It needs

mathematical operations to be done during processing of images.

F. CPU vs GPU Deep Learning Performance

As given above ,CPU's have larger instruction set than GPUs

making GPUs less flexible , however GPUs are said to be

dedicated for parallel computing even for same instructions. Deep

Neural Networks (DNN) are structured in a very uniform manner

such that at each layer of the network thousands of identical

artificial neurons perform the same computation. Therefore, its

way of computation is quite similar to how GPU computes

instructions.

As specified, image processing is an expensive task that requires

many calculations and since GPUs have more computational units

and have a higher bandwidth to retrieve from memory ,GPUs

perform quite well in that task with high speed as well,deep

learning includes massive image processing operations with large

data sets making parallelism a needed feature in deep learning

computing .

The main weakness of GPUs as compared to CPU's is memory

capacity I.e. GPUs are lower than CPU's. The highest known GPU

contains 24GB of RAM, in contrast, CPU's can reach 1TB of

RAM. A second weakness is that a CPU is required to transfer data

into the GPU card. CPU helps to feed GPU with enough data and

read/write files from/to RAM/HDD during training. If the CPU is

weak, it can only feed as few data as possible thus cannot keep up

with your powerful GPU. Ideally Deep Learning training systems

should have CPU with maximum number of processing cores to

handle more work to catch up with a GPU. In addition, GPU clock

speeds are 1/3rd that of high end CPU's, so on sequential

operations won’t be as fast as if they were processed using a CPU.

However, GPUs are so efficient and fast in matrix multiplication

and convolution due to parallelism and memory bandwidth. CPU's

are latency optimized while GPUs are bandwidth optimized. CPU

can fetch small amounts of memory much faster than GPU which

can fetch large amount of memory at slower rate. This means

larger computational operations, the more advantages of GPUs

over CPU's. But, GPUs are not latency optimized which might

affect the GPUs performance. However this problem was solved

by thread parallelism. By this we can say that GPUs provide best

memory bandwidth while having no drawback due to latency when

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 8 www.erpublication.org

thread parallelism is used.This is one of the main reasons why

GPUs are faster than CPUs for deep learning.

One more benefit of GPUs is that they consist of a small pack of

registers for every processing unit ,therefore a lot of register

memory which is small and fast, this provides GPUs with registers

size more than 30 times bigger compared to CPUs but yet very fast

.This difference in size is much more important than difference in

speed and it does not make a difference. And a good compiler tools

that can exactly indicate when we are using too much or too few

registers ,maximal performance is sure guaranteed.

This finally leads to the conclusion that we can store a lot of data

on register files on GPUs ,in order to be able to reuse convolutional

and matrix multiplication tiles. You have a 100MB matrix, you can

split it up in smaller matrices that fit into your cache and registers,

and then do matrix multiplication with three matrix tiles at

speeds.That is again why GPUs are much faster than CPUs in deep

learning which requires a lot of matrix multiplications. To sum up,

High bandwidth ,hiding memory access latency under thread

parallelism and having large and fast register files that can be

easily programmable , makes GPUs more fit when it comes to deep

learning.

III. DEEP LEARNING FRAMEWORKS

A. TensorFlow

TensorFlow is a popular machine learning system that is widely

used for building various neural network models and deep learning

models. TensorFlow integrates the most common units in deep

learning frameworks and supports many latest networks with

different settings, such as CNN and RNN [1]. TensorFlow supports

both large scale training and inference and it can effectively use

many powerful servers such as GPU for rapid training [7].

TensorFlow source code contains a file named Stream Executor

[8], which can call CUDA platform to use GPU.

B. Keras

Keras is a deep learning API written in Python, running on top of

the machine learning platform TensorFlow [9]. It was developed

with a focus on enabling fast experimentation [9].

C. PyTorch

PyTorch, the biggest competitor for Tensor Flow is developed by

Facebook and written in Python, C, and CUDA. PyTorch is based

on Torch, an open source machine learning library written in Lua.

This Python-first framework integrates Python and allows the use

of any Python library to build neural network layers [33].

D. Caffe2

Caffe is deep learning framework developed by the Berkeley AI

Research (BAIR) team. Caffe stands for Convolutional

Architecture for Fast Feature Embedding. It is written in C++ and

has a Python interface as well[34].

E. Microsoft CNTK

The Microsoft Cognitive Toolkit – an open-source DL framework

created to deal with big datasets and to support Python, C++, C#,

and Java.CNTK facilitates really efficient training for voice,

handwriting, and image recognition, and supports both CNNs and

RNNs. It is used in Skype, Xbox and Cortana[35].

IV. PARAM SHAVAK ARCHITECTURE

The system consists of 2 multicore CPUs each with minimum 12

cores along with two number of accelerator cards. The entire

configuration is available in a single server in a table top model.

Regardless to the traditional HPC systems/supercomputers, this

system does not require specific support infrastructure like

precision air-conditioned environment, controlled humidity etc.

Also, the accepted sound level is very less when compared to the

traditional servers. This brings down the infrastructure cost of the

system[12],[14].

Fig. 2: Block diagram of PARAM Shavak [14]

A. PARAM Shavak DL GPU

C-DAC's Deep Learning development - supercomputer in a box,

"PARAM SHAVAK DL GPU System" exclusively designed for

academic institutions and research organizations that employ deep

learning techniques for GPU accelerated machine learning

applications, big data problems (computer vision, speech

recognition, natural language processing, life sciences) and

artificial intelligence. Equipped with x86 based latest Intel

processor, 64 GB RAM, 8 TB storage, NVIDIA Pascal architecture

based co-processing technologies (P5000/P6000) and DLGPU

software environment (with Deep Learning GPU accelerated

libraries and SDK)enabling a new computing platform that's

disrupting conventional thinking from the desk-side to the data

center. With NVIDIA Pascal architecture inside, the system

delivers unprecedented performance up to 25TeraFLOPS of single

precision performance for deep learning workloads and enhanced

application scalability [14].

V. BENCHMARK

In order to assess the acceleration effect of GPU on deep learning

applications, the benchmark is required. There are many deep

learning benchmarks, such as DAWN Bench and MLPerf.

DAWNBench is a benchmark that measures end-to-end training

time to achieve a state-of-the-art accuracy level, as well as

inference time with that accuracy [10]. MLPerf is a benchmark

contains sub-items in different fields, including image

classification, object recognition, translation, recommendation,

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 9 www.erpublication.org

speech recognition, sentiment analysis, and reinforcement learning

[11].

A. Methodology

This describes the main method of the project which is in two

sections. In the first section, fully connected and recurrent neural

networks models are constructed by ParaDnn. We run these two

models on CPU and GPU of PARAM Shavak respectively. The

second section describes the construction of the convolutional

neural network models based on Keras. We run this model on

CPU, single GPU and Param Shavak DL GPU respectively, and

also run the models on the laptop.

1) ParaDnn
ParaDnn can create fully connected and recurrent neural network

models. These models are parameterizable, so ParaDnn models are

equal to or greater in size compared to today’s real-world models

[3].

B. Construction of fully connected models

FC models are comprised of multiple fully-connected layers. The

architecture of FC is

Input---> [Layer[Node]] ---> Output,

where [Layer] means the number of layers is variable. We can

change the number of layers, the number of nodes per layer, and

the numbers input and output units of the data sets.

The neural network can be regarded as a black box that can fit any

function. As long as the training data is sufficient, given a specific

x, we can get the desired y. Fully connected means that each

neuron in the Nth layer is connected to each neuron in the N-1th

layer, and each connection has a weight. As shown in the figure 3,

there are 2 nodes in the input layer numbered 1 and 2. The hidden

layer also has two nodes numbered 3 and 4. The output layer has

two nodes numbered 5 and 6, b1 and b2 are bias nodes. wji

represents the weight between the j-th node (unbiased node located

at the Nth layer) and the i-th node (unbiased node located at the N-

1th layer), where j is the target node and i is the source node. wjb

represents the weight between the j-th node (the unbiased node at

the Nth layer) and the biased node at the upper layer. aj represents

the output value of the j-th node.

Taking node 3 as an example, the input value of node 3 is

w31x1 + w32x2 + w3b,

and the output value of node 3 is

a3 = σ(w31x1 + w32x2 + w3b),

where σ is the activation function.

Fig.3: The structure of fully connected neural network

C. Construction of Recurrent Neural Network Models

The fully connected neural network can only take one input after

another, and the previous input is completely unrelated to the next

input. However, some tasks need to be able to better process the

sequence information, that is, the previous input and the

subsequent input are related, such as continuous speech and

continuous hand written text. RNN is good at this kind of problem.

Figure 4 shows the structure of RNN. On the left is the RNN

model that is not expanded by time, the right part of the Figure 4 is

the RNN model that is expanded by time series. Here, x(t)

represents the input of the training sample at the sequence index

number t. h(t) represents the hidden state of the model at the

sequence index number t, which is determined jointly by x(t) and

h(t=1). o(t) represents the output

of the model at the sequence index number t and is only

determined by the current hidden state h(t) of the model. L(t)

represents the loss function of the model at the sequence index

number t. The three matrices U, V and W are the linear

relationship parameters of the model, and they are shared

throughout the RNN. For any sequence index number t, the hidden

state h(t) is obtained from x(t) and h(t=1) , that is:

h(t) = σ(z(t)) = σ(Ux(t) + Wh(t=1) + b),

where σ is the activation function of the RNN, and b is the bias.

When the serial index number is t, the expression of the model o(t)

is:

o(t) = Vh(t) + c

The prediction output for the final sequence index number t is:

yˆ(t) = σ(o(t))

The loss function L(t) such as the log-likelihood loss function can

quantify the loss of the model at the current position, that is, the

difference between yˆ(t) and y(t). In this report,each token of the

input sequence is embedded within a fixed length vector, and the

length of the vector is the embedding size. We can change the

number of layers and the embedding size. We can also change the

batch size, which is the number of samples selected in one training.

The variables in the dataset include the maximum length per input

sequence and vocabulary size.

Fig.4: The structure of recurrent neural network[13]

Run this on the CPU and GPU of Param Shavak and also on laptop

and write the results to a file to analyze it later. The parameters of

models running on the GPU are same as running on the CPU.

VI. CNN AND KERAS

Convolutional neural network is a hierarchical model whose input

is raw data, such as images. The convolutional neural network

extracts high-level semantic information from the original data

through a series of operations such as convolution operation,

pooling operation and nonlinear activation function mapping

operation. Different types of operations are generally called layers

in convolutional neural networks: convolution operations

correspond to convolutional layers, and pooling operations

correspond to pooling layers. Finally, the last layer of the

convolutional neural network formalizes its target tasks

(classification or regression) into an objective function. Figure

shows the structure of the convolutional neural network.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 10 www.erpublication.org

A. Construction of Convolutional Neural Network Models

This example is a convolutional neural network built by Keras.

There are many datasets in Keras that can be used to train CNN.

Here we use MNIST dataset, which is a database containing

60,000 handwritten digit pictures that is commonly used for

training various image processing systems. We built the following

network architecture in our project:

[Convolution]2-[Maxpooling]-[Fully Connected]2

We want to train CNN to implement handwritten digit recognition

and classification. First, build two convolutional layers using

Conv2D function, which can extract features from 28 ∗ 28 pixels

pictures. Next, build a pooling layer by MaxPooling2D to

compress the input features, which can simplify network

computing complexity. Then, build two fully connected layers

using Dense function, which can connect all the features and send

the output value to the classifier. When a complete data set passes

through the neural network once and returns once, this process is

called an epoch. It is not enough to transfer the complete dataset

once in the neural network, and we need to pass the complete data

set multiple times in the same neural network. In this project, the

epochs of the CNN model are 20.

B. Run on CPU and GPU

First, run the model on the CPU of PARAM Shavak. Then, run the

model on DL GPU of PARAM Shavak by modifying parameters.

Finally, run the model on the laptop, which has an Intel i7-6700HQ

CPU and a NVIDIA GTX950M GPU.

VII. EXPECTED RESULTS

This includes the evaluation methods and evaluation results of FC

models, RNN models and CNN models. The evaluation method is

to compare the running time of the same model on both CPU and

GPU.

A. Results of ParaDnn

For fully connected models,

Parameters = (layer + 1) * (node * node + node)

Speedups = (the running time on CPU) / (the running time on

GPU)

 The speedups of FC models have large ranges, from 1 to 10. The

running time of GPU is much less than the running time of CPU.

As the complexity of the model increases, the effect of GPU

acceleration becomes more significant. For FC models, GPU is a

better platform as its architecture can perform large scale

parallelism calculations. In addition, FC models rarely reuse

weights and large models have more parameters, so they put a lot

of pressure on the storage system [3]. The memory bandwidth of

the GPU is higher, so running FC models on GPU is faster than

CPU.

For RNN,

Parameters = vocabulary size * (2 * embedding + 1) + 601 *

embedding * layer

Speedups = (the running time on CPU) / (the running time on

GPU)

It is obvious that the running time of GPU is much less than the

running time of CPU. Batch size is the number of samples selected

in one training. The batch size has a great influence on the speed of

models. As the batch sizes of the model increases, the effect of

GPU acceleration becomes more significant. This is mainly

because increasing the batch size can improve memory utilization

through parallelization.

B. Results of Keras

 This gives that the GPU has a significant acceleration effect on

computing, and the more GPUs used, the shorter the running time.

The result of running the CNN model on the laptop with an Intel

i7-6700HQ CPU and a NVIDIA GTX950M GPU is the running

time of an epoch of the model on the CPU is about 70 seconds, and

the running time on the GPU is about 20 seconds. It can be seen

that the divergence between the GPU and CPU running time on the

laptop is still very large. However, it can be seen that the running

time on the GPU of the laptop is a little longer than the running

time of the CPU on the Param Shavak DL GPU. This shows that

not all GPUs are faster than CPUs because it depends on the

computing capability of the hardware. Generally speaking, the

computing capability of the GPU on a computer is faster than the

computing capability of the CPU on this computer. The hardware

equipment of different platforms is different. For example, the

hardware performance of the server is much stronger than that of

the laptop. Thus, we can use GPUs that have higher computing

capabilities to accelerate computation and reduce running time

The GPU is composed of thousands of streaming processors, and

single instruction multi-thread (SIMT) mode is used for execution.

There are three dimensions in CUDA programming: grids, blocks

and threads. A large number of threads form a block, and a large

number of blocks form a grid. All threads in each block perform

the same operation. If two 1000-element matrices are added

together, 1000 threads will be started on the GPU, and one

instruction is executed on 1000 threads at a time. Compared with

the single-core CPU pipelined serial operation, simultaneous

calculation through a large number of threads will obtain a

considerable acceleration effect when the amount of data is very

large, although the computing power of a single core of the GPU is

weak. For CNN, the use of GPU acceleration is mainly in the

convolution process, and the convolution process can be

parallelized by CUDA like the vector addition. NVIDIA provides

the cuDNN library. The deep learning framework implements the

core operations of CNN and RNN models by passing tensors and

calling the cuDNN library.

VIII. CONCLUSION AND FUTURE WORK

This provides a benchmark analysis comparing the performance of

GPU and CPU on deep learning workloads. We use ParaDnn and

Keras to build up frequently used deep learning models, and we

compare the performance of CPU, multiple GPUs. Generally,

running workloads on GPU is faster than CPU and use of two

GPUs can also reduce the running time compared to only one

GPU. Not all GPUs are faster than CPUs, it depends on the device

computing capabilities. Also scaling workload on-node GPUs is

extremely important. The performance of deep learning algorithms

is determined by the structure of the model, using of the perfect

hardware and the large available datasets for the training.

However, this project still has some limitations. The models we

used are too simple, and the datasets are not complicated enough.

The number of hardware platforms is not enough. In future, we

need to find more benchmarks with more datasets(image or video),

and compare the running time, accuracy, latency of inference with

different algorithms, systems on more hardware platforms.

 REFERENCES

[1] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu.

Benchmarking state-of-the-art deep learning software tools.

In 2016 7th International Conference on Cloud Computing

and Big Data (CCBD), pages 99–104. IEEE, 2016

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10 Issue 9, September-2020

 11 www.erpublication.org

[2] Nickolls, J. and Dally, W.J., 2010. The GPU computing era. IEEE
micro, 30(2), pp.56-69.

[3] Wang, Y.E., Wei, G.Y. and Brooks, D., 2019. Benchmarking TPU,

GPU, and CPU platforms for deep learning. arXiv preprint
arXiv:1907.10701.

[4] Yuancheng Luo and Ramani Duraiswami. Canny edge detection on

nvidia cuda. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pages 1–8.

IEEE, 2008.

[5] Shane Cook. CUDA programming: a developer’s guide to parallel
computing with GPUs. Newnes, 2012.

[6] John D Owens, David Luebke, Naga Govindaraju, Mark Harris,
Jens Krüger, Aaron E Lefohn, and Timothy J Purcell. A survey of

general-purpose computa�tion on graphics hardware. In Computer

graphics forum, volume 26, pages 80–113. Wiley Online Library,
2007.

[7] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M. and Kudlur, M.,
2016. Tensorflow: A system for large-scale machine learning. In

12th {USENIX} symposium on operating systems design and

implementation ({OSDI} 16) (pp. 265-283).
[8] tensorflow.https://github.com/tensorflow/tensorflow/tree/master/te

nsorflow/stream_executor/.

[9] Keras: the python deep learning api. https://keras.io/.

[10] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian

Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle

Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An

end-to-end deep learning benchmark and competition.

Training, 100(101):102, 2017.
[11] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos,

Paulius Micike�vicius, David Patterson, Hanlin Tang, Gu-Yeon

Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training benchmark.
arXiv preprint arXiv:1910.01500, 2019.

[12] Agrawal, S., Das, S., Valmiki, M., Wandhekar, S. and

Moona, R., 2017, July. A case for param shavak: Ready-to-

use and affordable supercomputing solution. In 2017

International Conference on High Performance Computing

& Simulation (HPCS) (pp. 396-401). IEEE.
[13] Liu, C., 2020. Analyzing Machine Learning Workloads on

Contemporary Processors.
[14] https://www.cdac.in/index.aspx?id=hpc_ss_param_shavak

[15] Baidu DeepBench: Benchmarking Deep Learning Operations on

Different Hardware (2018). https://github.com/baidu-
research/DeepBench

[16] Stanford DAWNBench: An End-to-End Deep Learning

Benchmark and Competition (2018).
https://dawn.cs.stanford.edu/benchmark/

[17] BigDataBench: A Big Data and AI Benchmark Suite (2018).

http://prof.ict.ac.cn/
[18] Facebook AI Performance Evaluation Platform (2018).

https://github.com/facebook/FAI-PEP

[19] MLPerf: A Broad ML Benchmark Suite for Measuring

Performance of ML Software Frameworks, ML Hardware

Accelerators, and ML Cloud Platforms (2018). https://mlperf.org/

[20] TensorFlow Benchmarks (2018).
https://www.tensorflow.org/performance/benchmarks

[21] https://www.benchcouncil.org/AIBench/index.html

[22] https://www.mlperf.org
[23] https://github.com/rdadolf/fathom

[24] https://www.benchcouncil.org/BigDataBench/index.html

[25] https://hewlettpackard.github.io/dlcookbook-dlbs/#/
[26] https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cn

n_benchmarks

[27] Tao, J.H., Du, Z.D., Guo, Q., Lan, H.Y., Zhang, L., Zhou, S.Y.,
Xu, L.J., Liu, C., Liu, H.F., Tang, S. and Rush, A., 2018. B ench

ip: Benchmarking intelligence processors. Journal of Computer

Science and Technology, 33(1), pp.1-23.
[28] Chen, T., Chen, Y., Duranton, M., Guo, Q., Hashmi, A., Lipasti,

M., Nere, A., Qiu, S., Sebag, M. and Temam, O., 2012, November.

BenchNN: On the broad potential application scope of hardware
neural network accelerators. In 2012 IEEE International

Symposium on Workload Characterization (IISWC) (pp. 36-45).

IEEE.
[29] Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Phanishayee, A.,

Schroeder, B. and Pekhimenko, G., 2018. Tbd: Benchmarking and
analyzing deep neural network training. arXiv preprint

arXiv:1803.06905.

[30] Bureddy, D., Wang, H., Venkatesh, A., Potluri, S. and Panda,
D.K., 2012, September. OMB-GPU: a micro-benchmark suite for

evaluating MPI libraries on GPU clusters. In European MPI Users'
Group Meeting (pp. 110-120). Springer, Berlin, Heidelberg.

[31] Zhang, Q., Zha, L., Lin, J., Tu, D., Li, M., Liang, F., Wu, R. and

Lu, X., 2018, December. A Survey on Deep Learning Benchmarks:
Do We Still Need New Ones?. In International Symposium on

Benchmarking, Measuring and Optimization (pp. 36-49). Springer,

Cham.
[32] Wang, Y.E., Wei, G.Y. and Brooks, D., 2019. Benchmarking TPU,

GPU, and CPU platforms for deep learning. arXiv preprint

arXiv:1907.10701.
[33] https://pytorch.org/

[34] https://caffe.berkeleyvision.org/
[35] https://docs.microsoft.com/en-us/cognitive-toolkit/setup-cntk-on-

your-machine

Sayali S Pangre, Department of Computer Science and Engineering,

SOCSE, SandipUniversity, Nashik, India.

Aditya K Sinha, Associate Director HOD-ACTS, CDAC,
Pune, India.

Milind Bhandare, Assistant Professor, SandipUniversity, Nashik, India.

