
                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 7, July 2020   

 

 

                                                                                                    25                                                                   www.erpublication.org 

 

 
Abstract- The rapid advances in mobile computing (MC) will 

become a strong trend in the development of information 

technology as well as business and industry. However, devices 

are facing many challenges in terms of hardware resources, 

communication and security. Significant limited resources 

impede the improvement of service quality. This paper proposes 

a technique for balancing the performance and security of MCs 

using the immunology algorithm. 

 

Index Terms- Mobile computing, security, immune algrithms.  

I. INTRODUCTION 

Cloud computing was first introduced in 2007. It was 

noted as a profitable business option, reducing costs for 

developing and running mobile applications. It was 

considered as a new technology to experience a variety of 

low-cost mobile services and promise as a green IT solution 

for researchers [13]. 

Rapid advances in mobile computing (MC) [2] will 

become a powerful trend in the development of information 

technology as well as business and industry. However, 

devices are facing many challenges in terms of resources 

(battery life, storage and bandwidth) and communications 

(mobile and security) [6]. Significant limited resources 

impede the improvement of service quality. Cloud computing 

(CC) has been widely recognized as the next generation 

computer infrastructure. CC provides a number of benefits by 

allowing users to use infrastructure (servers, networks, and 

storage), platforms (intermediary services and operating 

systems), and software with low cost. The servieces are 

usually provided by cloud computing providers such as 

Google, Amazon, and Salesforce. In addition, CC allows 

users to use resources in an on-demand fashion. As a result, 

mobile applications can be quickly released and released with 

minimal management effort. With the explosion of CC 

applications and support for a wide range of user services, 

mobile phones (MCC) were introduced as an integration of 

cloud computing into the mobile environment. MCC brings 

new services and utilities to mobile users to take full 

advantage of cloud computing. 
 

Dinh Thi Thanh Uyen, Thai Nguyen University of Agriculture and 

Forestry, Vietnam.  

 

Trinh Van Ha, Thai Nguyen University of Information Technology and 

Communications, Thai Nguyen City, Vietnam.  

 

Duong Thuy Huong, Thai Nguyen University of Information Technology 

and Communications, Thai Nguyen City, Vietnam.  

 

Vu Van Dien, Thai Nguyen University of Information Technology and 

Communications,  Thai Nguyen City, Vietnam.  

 
 

 

Protecting user privacy and data/applications from 

attackers is a key to establishing and maintaining consumer 

trust in the mobile platform, especially at MCC. 

 

Mobile devices such as cell phones, PDAs, and 

smartphones are exposed to many security threats such as 

malicious code (eg viruses, Trojans). In addition, mobile 

phones with integrated global positioning system (GPS) may 

cause privacy problems for subscribers. Two key issues are 

as follows:  

1. Security for mobile applications: Installing and 

running security software such as Kaspersky, McAfee 

and AVG are antivirus programs on mobile devices 

that are simple ways to Detect security threats (eg 

viruses, malicious codes) on devices. With the 

advantages of GPS navigation devices, the number of 

mobile phone users using location based services 

(LBS) has increased. However, LBS faces a privacy 

issue when mobile phone users provide personal 

information like their current location. This problem 

becomes worse if the opponent knows important 

information of the user.  

 

2. Data security on Clouds: Although both mobile phone 

users and application developers benefit from storing large 

amounts of data/applications on a cloud, they should be 

careful about deal with data/applications about their integrity, 

authentication, and electronic signatures. 

 

With an increasing number of cloud services, the demand 

for access to data resources (eg images, files, and documents) 

increases. As a result, a method to deal with is, storing, 

managing, and accessing data resources in the cloud will 

become a significant challenge. However, processing data 

resources in the cloud is not an easy problem due to low 

bandwidth, mobility, and limitations of the resource 

capabilities of mobile devices while while the system must 

still ensure safety. This paper proposes a technique for balancing 

the performance and security of MCs using the immunology 

algorithm. 

 

The rest of the paper is organized as follows. In the next 

section, we present the background of an immune algorithm 

and its abilities for distributed environment. Section 3 

presents our experiments. Section 4 concludes the paper and 

discusses some possible future works.   

II. NEGATIVE SELECTION ALGORITHM 

In this paper, Artificial Immune System (AIS) [4], a 

multidisciplinary research area that combines the principles 

Distributed negative selection algorithms for mobile 

cloud computing 

Dinh Thi Thanh Uyen, Trinh Van Ha, Duong Thuy Huong, Vu Van Dien 



Distributed negative selection algorithm for mobile cloud computing 

                                                                                              26                                                         www.erpublication.org 

of immunology and computation, is used for experiments on 

the proposed representation. 

 

AIS is inspired by the observation of the behaviors and the 

interaction of normal component of biological systems - the 

self -and abnormal ones - the nonself. Negative Selection 

Algorithm (NSA) is a popular model of AIS mainly designed 

for one-class learning problems.  
 

Given a collection of self patterns S, a typical NSA 

comprises of two phases: detector generation and detection 

[4]. In the detector generation phase (Fig. 1.a), the detector 

candidates are generated randomly and censored by matching 

them against given self samples taken from the set S. The 

candidates that match any element of S are eliminated and the 

rest are kept and stored in the set D. In the detection phase 

(Fig. 1.b), the collection of detectors are used to distinguish 

self (system components) from nonself (outlier like viruses, 

worms, etc.). If an incoming data instance matches any 

detector, it is claimed as nonself, and it is claimed as self 

otherwise.  

 

From a machine learning perspective, negative selection is 

usually described as an anomaly detection technique. Since 

its introduction, NSA has been a source of inspiration for 

many computing applications, especially for intrusion 

detection [4], [9]. 

  

 
 

Fig. 1. Outline of a typical negative selection algorithm [4]. 
 

With respect to binary-based AIS using discrete detector set, 

to the best of our knowledge, the only algorithm for 

generating a perfect and discrete set of detectors was 

proposed by T. Stibor in [8] and by S. T. Wierzchoń in [10]. 

 

In the below figure, we illustrate the process for generating 

a detector set by using the number of five contiguous matches 

required for a match. The string to be protected is logically 

segmented into five equal-length “self” strings. To generate 

the detector, random strings are produced and matched 

against each of the self strings. The first two strings, 

00000111 and 00000010, are eliminated because they both 

match self string 00000110 at at least five contiguous 

positions. The string 11101001 fails to match any string in the 

self at at least five contiguous positions, so it is accepted into 

the detector set. 

 

 

Figure 2. Illustration of generating Detector set  

 

Each copy of the detection algorithm is unique: Most 

protection schemes need to protect multiple sites. In these 

environments, any single protection scheme is unlilely to be 

effective, because once a way is found to avoid detection at 

one site, then all sites are vulnerable. It is important to 

provide each protected location with a unique set of 

detectors. This implies that even if one site is compromised, 

other sites will remain protected.  

Detection is probabilistic: One consequence of using 

different sets of detectors to protect each entity is that 

probabilistic detection methods are feasible. This is because 

an intrusion at one site is unlilely to be successful at multiple 

sites. By using probabilistic methods our system can achieve 

high system-wide reliability at relatively low cost (time and 

space). The price, of course, is a some-what higher chance of 

intrusion at any one site.  

A robust system should detect (probabilistically) any 

foreign activity rather than looking for specific known 

patterns of intrusion. Most virus detection programs work by 

scanning for unique patterns (e.g., digital signatures) that are 

known at the time the detection software is distributed. This 

leaves systems vulnerable to attack by novel means. Like 

other change detectors, our algorithm learns what self is and 

notices (probabilis-tically) any deviation from self. 

It is useful to know the probability PM that random strings 

match at at least r contiguous locations. If m = the number of 

alphabet symbols, l = the number of symbols in a string 

(length of the string), and r = the number of contiguous 

matches required for a match, then we have [7]: 

PM = m
-r
 [(1- r)*(m - 1)/m +1] 

Since detection is probabilistic, we need to make accurate 

estimates of these probabilities for different configurations of 

the change-detection system. Suppose that we have some 

string that we want to protect. This string could be an 

application program, some data, or any other element of a 

computer system that is stored in memmory. Using the NSA 

algorithm described above, we would like to estimate the 

number and size of detector strings that will be required to 

ensure that an arbitrary change to the protected string is 

detected with some fixed probability. We make the following 

definitions and calculations:  

NRo = The number of initial detector strings (before 

censoring). 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 7, July 2020   

 

 

                                                                                                    27                                                                   www.erpublication.org 

 

NR = The number of strings after censoring (size of the 

repertoire).  

NS = The number of self strings.  

PM = The probability of a match between 2 random strings.  

f = The probability of a random string not matching any of 

the NS self strings = (1 - PM)
Ns

.  

Pf = The probability that NR detectors fail to detect an 

intrusion.  

If PM is small and NS is large, then f  e
PMNs

 and 

NR = NRo f, Pf = (1— PM)NR 

If PM is small and NR is large, then Pf  e
PMNR.  

Thus, NR= NRo f = -ln(Pf)/PM 

Then we get the following: NRo = -ln(Pf)/PM/(PM(1-PM)
NS) 

This formula allows us to predict the number of initial 

strings (NRo) that will be required to detect a random change, 

as a function of the probability of detection (1 - Pf), the 

number of self strings being protected (NS), and the matching 

rule (PM). NRo is minimized by choosing a matching rule such 

that PM 1/NS. 

III. EXPERIMENTS  

Table 1 illustrates the effect of varying r and l on PM for 

different values of m. The first row shows the configuration 

we have used in most of our experiments. Setting r = 8 

corresponds to a one-byte change. The first four rows of the 

table show the linear increase in PM as the length of the string 

(l) increases. Rows two and five show the exponential 

decrease in PM as r increases. Finally, the last eight rows 

show the dramatic effect on PM of increasing the alphabet 

size.  

 

m r l PM 

2 8 16 0,019531250 

2 8 32 0,050781250 

2 8 64 0,113281250 

2 8 128 0,238281250 

2 16 32 0,000137329 

2 16 64 0,000381470 

2 16 128 0,000869751 

4 16 256 0,000000042 

4 8 32 0,000289917 

4 8 64 0,000656128 

4 8 128 0,001388550 

4 16 32 0,000000003 

4 16 64 0,000000009 

4 16 128 0,000000020 

4 16 256 0,000000042 

8 16 32 0,000000000 

8 16 64 0,000000000 

8 16 128 0,000000000 

8 16 256 0,000000000 

 

Table 1: Example values of PM for varying values of m 

(alphabet size), r (number of contiguous matches required for 

a match), and l (string length).  

Based on the above analysis, we can make several 

observations about the algorithm:  

1. It is tunable: we can choose a desired probability of 

detection (Pf), and then estimate the number of detector 

strings required as a function of the size of NS (the strings to 

be protected). Since an increased probability of detection 

results in increased computational expense (due to the 

increased size of Ro and R), one can choose a desired 

probability of detection by determining (a) how fatal a single 

intrusion would be, and (b) how much redundancy exists in 

the system.  

2. NR is independent of NS for fixed PM and Pf. That is, the 

size of the detector set does not necessarily grow with the 

number of strings being protected. This implies that it is 

possible to protect very large data sets efficiently.  

3. If NR, Pf, and PM are fixed, then NRo grows exponentially 

with NS. This exponential factor is unfortunate in one respect, 

but it does imply that once a set of detectors has been 

produced (say, using a supercomputer) that it would be 

virtually impossible for a malicious agent to change self and 

then change the detector set so that the change was unnoticed. 

NR, can be controlled by choosing PM = 1/NS.  

4. Detection is symmetric: Changes to the detector set are 

detected by the same matching process that notices changes 

to self. This implies that when a change is detected there is no 

a priori way to decide if the change was to self or to the 

detectors. The advantage is that self confers the same 

protection to the detector set that the detector set provides to 

self. 

An experimental prorogram illustrates the approach 

methods. The implemented algorithm takes a set of self S 

(incoming data), PM, number of ditributed sites, l and r as 

inputs and popular performance metric True Positive, False 

Negative, False Negative, True Negative with number of 

attacks as outputs.  

 

 
Figure 3. Illustration of detecting attacks from 

distributed sites 

IV. CONCLUSIONS  

Mobile cloud computing is one of the future mobile 

technology trends because it combines the advantages of 

mobile computing and cloud computing, thus providing 

optimal services to users. 



Distributed negative selection algorithm for mobile cloud computing 

                                                                                              28                                                         www.erpublication.org 

Applications supported by mobile cloud including mobile 

commerce, mobile learning, and mobile healthcare have been 

more popular, showing the applicability of MCC into a 

variety of mobile services.  

This article has provided an overview of AIS, especially 

NSA and its applications in MCC security. If the process of 

generating detectors is costly, it can be distributed to multiple 

sites because of its inherent parallel characteristics. In the 

future, we will develop this research for incorporating into 

real MCC.  

ACKNOWLEDGEMENT 

This research is based upon work supported in part by 

Information and Communication Technology University, 

Thai Nguyen University for research project “Mobile cloud 

technology and learning applications”. 

 

REFERENCES 

[1] P. D'haeseleer, "An immunological approach to change detection: 

theoretical results," Proceedings 9th IEEE Computer Security 

Foundations Workshop, Kenmare, Ireland, 18-26, 1996. 

[2] J. Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A Survey 

of Mobile Cloud Computing: Architecture, Applications, and 

Approaches. in Wireless Communications and Mobile Computing, 

Wiley, 2013. 

[3] Haag, Charles R., Gary B. Lamont, Paul D. Williams, and Gilbert L. 

Peterson. "An artificial immune system-inspired multiobjective 

evolutionary algorithm with application to the detection of distributed 

computer network intrusions." In International Conference on Artificial 

Immune Systems, pp. 420-435. Springer, Berlin, Heidelberg, 2007. 

[4] Z. Ji. Negative Selection Algorithms: from the Thymus to V-detector. 

PhD thesis, The University of Memphis, 2006. 

[5] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J. 

Twycross. Immune system approaches to intrusion detection - a Review. 

Natural Computing, 6:413–466, 2007. 

[6] White Paper, “Mobile Cloud omputing Solution Brief,” AEPONA, 

November, 2010. 

[7] J. K. Percus, Percus, and A. S. Perelson. Predicting the size of the 

antibody combining region from consideration of efficient self/non-self 

dis-crimination. Proceedings of the National Academy of Science, 

90:1691-1695, 1993. 

[8] T. Stibor, K. M. Bayarou, and C. Eckert, “An investigation of R-chunk 

detector generation on higher alphabets,” in Genetic and Evolutionary 

Computation Conference (GECCO), vol. 3102 of Lecture Notes in 

Computer Science, pp. 299–307, 2004. 

[9] H. Yang, T. Li, X. Hu, F. Wang, Y. Zou, “A survey of artificial immune 

system based intrusion detection”, The Scientific World Journal, 2014. 

[10] S. T. Wierzchoń. Generating optimal repertoire of antibody strings in an 

artificial immune system. In IIS’2000 Symposium on Intelligent 

Information Systems, pp. 119–133, 2000. 

[11] W. Zheng at el, A Rapid r-continuous Bits Matching Algorithm for 

Large-scale Immunocomputing, in Proceedings of the International 

Conference on Computer Science and Software Engineering, 431- 434, 

2008. 

[12]. D. Y. Yeung, Y. Ding, “Host-based intrusion detection using dynamic 

and static behavioral models”, Pattern Recognition, vol. 36, no. 1, pp. 

229–243, 2003.  

[13] http://www.mobilecloudcomputingforum.com/ 
 

BIOGRAPHY 

Dinh Thi Thanh Uyen is an IT lecturer at Thai Nguyen University of 

Agriculture and Forestry. She finished her master course on Computer 

science at S.N.R Sons - India in 2011. She has taught a wide variety of 

courses for UG students and guided several projects. 

Trinh Van Ha is a lecturer in Faculty of Information Technology - 

University of Information Technology and Communications, Thai Nguyen. 

He finished his master course on Computer science at Thai Nguyen 

University in 2008. He has taught a wide variety of courses for UG students 

and guided several projects. He has published several papers in national and 

international journals. His research interests are network architecture and 

computer security. 

Duong Thuy Huong is a lecturer in Faculty of Information Technology - 

University of Information Technology and Communications, Thai Nguyen. 

She finished her master course on Computer science at Thai Nguyen 

University in 2014. She has taught a wide variety of courses for UG students 

and guided several projects. 

Vu Van Dien is a lecturer in Faculty of Information Technology - University 

of Information Technology and Communications, Thai Nguyen. He finished 

his master course at Hanoi University of Technology in 2016. He has taught 

a wide variety of courses for UG students and leaded several projects. His 

research interests are network architecture and computer security. 
 

 
  

 

http://www.mobilecloudcomputingforum.com/

