
International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 1, January 2020

 18 www.erpublication.org


Abstract—Many applications in real world use linear data

structures, such as string or vector. The linear data type may

omit the information at its edges, especially for flow data. In this

paper, we present a ring representation technique for data. Our

experiment results on flow-based Network data show that the

new approach archives prominent classification rates.

Index Terms—Ring data, linear data, classification,

intrusion, immune system.

I. INTRODUCTION

 As we known, many applications use two types of linear

data representation: string and real-valued vector. For both

popular types, representations are linear structure of symbols

or numbers. They may omit information at the edges (the

begin and the end) of these structures and lead to reduce

classification rates.

Our idea of new data presentaion originates from an earlier

empirical implementation on binary ring-based strings. Using

our ring-typed data representation shows that both detection

rates and accuracy rate are higher than that of the linear ones,

while false alarm rates are quite similar. So we use ring

structures instead of linear ones for more exact classification.

In this paper, Artificial Immune System (AIS) [1], a

multidisciplinary research area that combines the principles

of immunology and computation, is used for experiments on

the proposed representation.

AIS is inspired by the observation of the behaviors and the

interaction of normal component of biological systems - the

self -and abnormal ones - the nonself. Positive Selection

Algorithm (PSA) is a popular model of AIS mainly designed

for one-class learning problems such as anomaly detection.

The outline of a typical PSA contains two stages [1]. In the

generation stage (Fig. 1), the detectors are generated by some

random process and censored by trying to match given self

samples taken from set S. collection of detectors (or detector

set) is used to verify whether an incoming data instance is self

or nonself.

Nguyen Thanh Hai, IT Center, Thai Nguyen University, Thai Nguyen

City, Vietnam, Mobile No. +(84)-968550888

 Trinh Van Ha, University of Information Technology and

Communications, Thai Nguyen. Thai Nguyen City, Vietnam, Mobile No.

+(84)-983454755

Nguyen Van Truong, Faculty of Mathematics, Thai Nguyen University

of Education, Thai Nguyen City, Vietnam, Mobile No. +(84)-915016063

Those candidates that match are kept as detectors in set D and

the rest are eliminated. In the detection stage (Fig. 2), the. If it

matches any detector, it is claimed as self, otherwise it is

nonself or an anomaly. This description is limited to some

extent, but conveys the essential idea.

Fig. 1. Model of detector generation in PSA

Fig. 2. Detection of new instances in PSA

II. BASIC TERMS AND DEFINITIONS

In PSAs, an essential component is the matching rule which

determines the similarity between detectors and self samples

(in the detector generation phase) and coming data instances

(in the detection phase). Obviously, the matching rule is

dependent on detector representation. In this paper, both self

and nonself cells are represented as binary strings of fixed

length. This representation is the most simple and popular

representation of data in AISs, and other representations

(such as real valued) could be reduced to binary [15, 16].

3.1 Strings

An alphabet Σ is nonempty and finite set of symbols. A

string s ∈ Σ
*
 is a sequence of symbols from Σ, and its length

is denoted by |s|. A string is called empty string if its length

equals 0. Given an index i ∈ {1, 2, . . . , |s|}, then s[i] is the

A ring representation of data for immune-based

intrusion detection systems

Nguyen Thanh Hai, Trinh Van Ha, Nguyen Van Truong

A ring representation of data for immune-based intrusion detection systems

 19 www.erpublication.org

symbol at position i in s. Given two indices i and j,

whenever j ≥ i, then s[i . . . j] is the substring of s with length

j − i + 1 that starts at position i and if j < i, then s[i . . . j] is

the empty string.

We will use ring structures instead of linear ones for more

exact classification. A simple solution for this process is to

concatenate each string with its fist k bits. Each new linear

string is a ring representation of its original one. Fig. 3

shows a ring representation (b) and its original string (a)

with k = 3.

Fig. 3. A ring-based representation (b) of a string (a)

 Given a set of strings S ⊂ Σ
ℓ
, a set Sr ⊂ Σ

ℓ+r−1
 includes

ring representations of all strings in S by concatenate each

string s ∈ S with its fist r − 1 bits.

Note that we can easily apply the idea of ring strings for

other data representations in AIS. One way to do this, for

instance, is to create ring representations of other structures

such as trees, automata, etc., from set Sr instead of S as usual.

Our approaches can be implemented on any finite alphabet,

but strings used in all examples are binary, Σ = {0, 1}, just for

easy understanding.

2.2 R-chunk detectors

Given a set of strings S ⊂ Σ
ℓ
, a tuple (d, i) of a string d ∈

Σ
r
, r ≤ ℓ, and an integer i ∈ {1, ..., ℓ} is called an r-chunk

detector if there exists a s ∈ Sr such that d matches s[i, . . . , i

+ r − 1]. We also use the notations: Si = {(d, i), (d, i) is a

positive r-chunk detector} is set of all positive r-chunk

detectors at position i with respect to Sr, i = 1, . . . , ℓ.

Example 1. Let ℓ = 5 matching threshold r = 3. Suppose

that we have the set of four strings S = {s1 = 00000; s2 =

10110; s3 = 10111; s4 = 11111}. Sr = {0000000; 1011010;

1011110; 1111111}. S1 = {(000,1); (101,1); (111,1)}, S2 =

{(000,2); (011,2); (111,2)}, S3 = {(000,3); (110,3); (111,3)},

S4= {(000,4); (101,4); (111,4)}, S5 = {(000,5); (010,5);

(110,5); (111,5)}.

Given a data set S of string with the same n features, length

of binary representations of strings is calculated by equation

ℓ= ∑

 where ki is the smallest integer such that |Di|< ,

and Di is value domain of feature i.

2.3 Proposed algorithms

Given ℓ, r, a normal dataset N ⊂ Σ
ℓ
, an abnormal dataset A

⊂ Σ
ℓ
. Algorithm 1 creates trees used in the algorithm 2. A

new data instance s ∈ Σ
ℓ
 is detected as self or nonself by

Algorithm 2.

Algorithm 1: Algorithm to generate trees

1: procedure TreesGeneration(N, r, TA)

Input: A set of self strings N ⊆ Σ
ℓ
, a matching

threshold r ∈ {1, . . . , ℓ}.

Output: A set TA of ℓ − r + 1 prefix trees presenting

trees.

2: for i = 1, ..., ℓ do

3: Create an empty tree TNi

4: for all s ∈ Nr do

5: for i = 1, ..., ℓ do

6: insert every s[i . . . i + r − 1] into TNi

7: for i = 1, ..., ℓ do

8: Create an empty tree TAi

9: for all s ∈ Ar do

10: for i = 1, ..., ℓ do

11: insert every s[i . . . i + r − 1] into TAi

Algorithm 2: Algorithm PSA to detect if a new data instance

s ∈ Σ
ℓ
 is self or nonself.

1: procedure PSA(N, A, s, r, TN , TA)

Input: A set of nonself strings N ⊆ Σ
ℓ
, a set of

self strings A ⊆ Σ
ℓ
, an unlabeled string s ∈ Σ

ℓ
, a

matching threshold r ∈ {1, 2, . . . , ℓ}.

Output: A set TA of ℓ − r + 1 prefix trees

presenting nonself trees, a set TN of ℓ − r + 1

prefix trees presenting self trees, a label of s

(self or nonself).

2: TreesGeneration(N, r, TA)

3: d1 = d2 = d3 = 0

4: Create a string sr as ring representation of s

5: for i = 1, ..., ℓ do

6: s0 = sr[i . . . i + r − 1]

7: if s0  TNi then

8: d1 = d1 + 1

9: if s0  TAi then

10: d2 = d2 + 1

11: if Leaf(s0, TNi) < Leaf(s0, TAi).t1 then

12: d3 = d3 + 1

13: if d1 > t2 then output s is nonself

14: else if d2 > t3 then output s is self

15: else if d3.t4 > ℓ then output s is nonself

16: else output s is self

III. EXPERIMENTS

3.1 Datasets

In our experiments, we use two popular flow-based

datasets: NetFlow [31] and TU [36]. The flow-based

NetFlow is generated from packet-based DARPA dataset

[38]. This dataset focuses only on flows to a specific port and

an IP address which receives the most number of attacks. It

contains all 129,571 traffics (including attacks) to and from

victims. Each flow in the datasets has 10 fields: Source IP,

Destination IP, Source Port, Destination Port, Packets,

Octets, Start Time, End Time, Flags, and Proto.

Other labeled flow-based data set was captured by

monitoring a honey-pot hosted in the University of Twente

network, so we call it TU dataset. This dataset has three

categories: malicious, unknown and side-effect. It has

14170132 flows which are mostly of malicious nature.

The NetFlow dataset is used for experiment 1 with features

Packets, Octets, Duration, Scr port, Dst port, Flags and IP

protocol. The UT dataset is used for experiment 2 with

features Packets, Octets, Duration and Flags.

3.2 Performance

Table 1 illustrates the results of two experiments. PSA

cannot train with unlabeled data, so we only use 10% labelled

dataset, 5998 attack flows and 595 normal flows, for training

phase in experiment 1. Meanwhile two other algorithms use

100% dataset for training, in which 90% unlabelled dataset

used for S4VM. Results from the experiment strongly

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 1, January 2020

 20 www.erpublication.org

confirm the efficiency of PSA in comparison with methods

proposed in [35].

In experiment 2, we compare PSA performance with some

other algorithms run on WEKA 3 with their default

parameters. The detection rate of PSA is highest among the

other algorithms, while accuracy is remarkable high. Some

SVMs achieved admirable accuracies with 100%, but their

FARs are very high with approximately or even 100%. Poor

FARs of these algorithms means that they cannot verify the

nature of benign traffic in the dataset, but PSA can.

Table 1. Comparison between PSA and other algorithms

Algorithms ACC DR FAR

Experiment 1

PSA (10% labelled data) 0.9781 0.9626 0.0157

S4VM (10% labelled data) [35] 0.9196 - 0.0384

EBP - based MLP [35] 0.9655 - 0.0315

Experiment 2

PSA 0.9257 0.9974 0.1945

Naive Bayes 0.6832 0.9972 0.8668

SVM (linear) 0.7315 1.0000 0.7185

SVM (polynomial) 0.7143 0.8788 0.5613

SVM (RBF) 0.6263 1.0000 0.9998

SVM (sigmoid) 0.6263 1.0000 1.0000

Deep learning 0.8106 0.8201 Nan

Recent works focus on deep learning, so we produced

another experiment using deep learning. In the experiment,

we use 01 hidden layer, the number of unit on each layer is

100, activation function is Relu, optimization function is

Adam, learning rate is 0.001, and number of epochs is 200.

We can see results from the last row of table 1 that all ACC

and DR is lower than those of our PSA.

IV. CONCLUSIONS

The major contribution of this study is to propose a ring

representation instead of linear one for better performance in

terms of both detection rate and accuracy rate.

To verify the effectiveness of the proposed approach, two

different datasets are adopted to validate this approach. The

results from four experiments indicate that the proposed

approach can produce competitive and consistent classifying

performance on real datasets. Moreover, results from

experiment 2 with only 10% of training dataset confirm that

PSA can detect anomalies in a small amount of labelled data.

The algorithm can be applied to the data set that has

following characters: 1- Having strings with equal number of

features, and 2 - Value domain of all features is discret.

However, if the domain is continuous, such as real numbers,

then a good quantification may be used before applying our

algorithm.

In the future, we are planning to combine our algorithms

with some machine learning methods to have better detection

performance, reduce training time. Moreover, it would be

interesting to further develop technique how to choose

optimal parameters as well as to integrate them in new

objective functions. We also would like to apply the method

for other security problems with larger datasets.

To the best of our knowledge, there has not been any

published attempt in using ring type of data instead of linear

one to attain more exact classification.

AKNOWLEDGEMENT

This research is based upon work supported in part by Thai

Nguyen University for university’s research; code number

DH2017-TN01-03.

REFERENCES

[1] H. Yang, T. Li, X. Hu, F. Wang, Y. Zou, “A survey of artificial immune
system based intrusion detection”, The Scientific World Journal, 2014.

[2] J. N. Stephen Northcutt, “Network Intrusion Detection”, New Riders,

2003.
[3] B. Li, J. Springer, G. Bebis, M. Hadi Gunes, “Review: A survey of

network flow applications, Journal of Network and Computer

Application”, vol. 36, no. 2, pp. 567–581, 2013.
[4] S. X. Wu, W. Banzhaf, “The use of computational intelligence in

intrusion detection systems: A review”, Applied Soft Computing, vol.

10, no. 1, pp. 1–35, 2010.
[5] D. Dasgupta, F. Gonzalez, “An immunity-based technique to

characterize intrusions in computer networks”, IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 281–291, 2002.
[6] K. B. Sim, D. W. Lee, “Modeling of Positive Selection for the

Development of a Computer Immune System and a Self-Recognition

Algorithm”, International Journal of Control, Automation, and Systems,
vol. 1, no. 4, pp. 453–458, 2003.

[7] X. Hang, H. Dai, “Applying both positive and negative selection to

supervised learning for anomaly detection”, in: Conference on Genetic
and Evolutionary Computation (GECCO), pp. 345–352, 2005.

[8] L. X. Peng, Y. F. Chen, “Positive selection-inspired anomaly detection

model with artificial immune”, in: International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery

(CyberC), pp. 56–59, 2014.

[9] Z. Fuyong, Q. Deyu, “Run-time malware detection based on positive
selection”, Journal in Computer Virology, vol. 7, no. 4, pp. 267–277,

2011.

[10] Y. Tan, “Anti-Spam Techniques Based on Artificial Immune System”,

CRC Press, 2016.

[11] Z. Fuyong, Q. Deyu, “A positive selection algorithm for classification”,

Journal Computational Information Systems, vol. 7, pp. 207–215, 2012.
[12] P. H. Pisani, A. C. Lorena, A. C. Carvalho, “Adaptive positive selection

for keystroke dynamics”, J. Intell. Robotics Syst., vol. 80, no. 1, pp.

277–293, 2015.
[13] J. Vykopal, “Flow-based Brute-force Attack Detection in Large and

High-speed Networks”, Dissertations, Masaryk University, 2013.

[14] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, “An
Overview of IP Flow-Based Intrusion Detection”, IEEE

Communications Surveys Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[15] F. Gonzalez, D. Dasgupta, J. Gomez, “The effect of binary matching
rules in negative selection”, in: Genetic and Evolutionary Computation

Conference (GECCO), pp. 195–206, 2003.

[16] Z. Ji, D. Dasgupta, “Revisiting negative selection algorithms”,
Evolutionary Computation, vol. 15, no. 2, pp. 223–251, 2007.

[17] C. Guo, Y. J. Zhou, Y. Ping, S. S. Luo, Y. P. Lai, Z. K. Zhang, “Efficient

intrusion detection using representative instances”, Computers &

Security, Part B, vol. 39, pp. 255 – 267, 2013.

[18] D. Y. Yeung, Y. Ding, “Host-based intrusion detection using dynamic
and static behavioral models”, Pattern Recognition, vol. 36, no. 1, pp.

229–243, 2003.

[19] C. A. Mart´ınez, G. I. Echeverri, A. G. C. Sanz, “Malware detection
based on cloud computing integrating intrusion ontology

representation”, in: IEEE Latin-American Conference on

Communications, pp. 1–6, 2010.
[20] P. Winter, E. Hermann, M. Zeilinger, “Inductive intrusion detection in

flow-based network data using one-class support vector machines”, in:

International Conference on New Technologies, Mobility and Security
(NTMS), pp. 1–5, 2011.

[21] V. D. Kotov, V. Vasilyev, “Immune model based approach for network

intrusion detection”, in: International Conference on Security of
Information and Networks, pp. 233–237, 2010.

[22] T. S. Sobh, W. M. Mostafa, “A cooperative immunological approach for

detecting network anomaly”, Applied Soft Computing, vol. 11, no. 1,
pp. 1275 –1283, 2011.

[23] Zeng, Jie and Liu, Xiaojie and Li, Tao and Li, Guiyang and Li, Haibo

and Zeng, Jinquan, “A novel intrusion detection approach learned from
the change of antibody concentration in biological immune response”,

Applied Intelligence, vol. 35, no. 1, pp. 41–62, 2011.

[24] S. B. Inadyuti Dutt, I. Maitra, “Intrusion detection system using
artificial immune system”, International Journal of Computer

Applications, vol. 144, no. 12, pp. 19–22, 2016.

A ring representation of data for immune-based intrusion detection systems

 21 www.erpublication.org

[25] K. S. Desale, R. Ade, “Genetic algorithm based feature selection

approach for effective intrusion detection system”, in: International
Conference on Computer Communication and Informatics, pp. 1–6,

2015.

[26] R. Bronte, H. Shahriar, H. M. Haddad, “A signature-based intrusion
detection system for web applications based on genetic algorithm”, in:

International Conference on Security of Information and Networks,

pp.32–39, 2016.
[27] H. B. M. Mehmod, Tahirand Rais, “Ant Colony Optimization and

Feature Selection for Intrusion Detection”, Springer International

Publishing, pp. 305–312, 2016.
[28] X. Yang, Z. Hui, Intrusion detection alarm filtering technology based on

ant colony clustering algorithm”, in: “International Conference on

Intelligent Systems Design and Engineering Applications, pp. 470–473,
2015.

[29] M. Zolotukhin, T. Hmlinen, T. Kokkonen, J. Siltanen, “Online detection

of anomalous network flows with soft clustering”, in: International
Conference on New Technologies, Mobility and Security, pp. 1–5,

2015.

[30] Y. Sawaya, A. Kubota, Y. Miyake, “Detection of attackers in services

using anomalous host behavior based on traffic flow statistics”, in:

International Symposium on Applications and the Internet, pp. 353–359,

2011.
[31] Q. A. Tran, F. Jiang, J. Hu, “A real-time netFlow-based intrusion

detection system with improved BBNN and high-frequency field

programmable gate arrays”, in: IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, pp. 201–208,

2012.
[32] M. Sheikhan, Z. Jadidi, “Flow-based anomaly detection in high-speed

links using modified GSA-optimized neural network”, Neural

Computing and Applications, vol. 24, no. 3, pp. 599–611, 2014.
[33] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, “Metaheuristic

algorithms based flow anomaly detector”, in: Asia-Pacific Conference

on Communications, pp. 717–722, 2013.
[34] M. J. Chapple, T. E. Wright, R. M. Winding, “Flow anomaly detection

in firewalled networks, in: Securecomm and Workshops”, pp. 1–6,

2006.

[35] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, K. Singh,

“Flow-based anomaly detection using semisupervised learning”, in:

International Conference on Signal Processing and Communication
Systems, pp. 1–5, 2015.

[36] A. Sperotto, R. Sadre, F. Vliet, A. Pras, “A labeled data set for

flow-based intrusion detection”, in: IEEE International Workshop on IP
Operations and Management, pp. 39–50, 2009.

[37] R. Hofstede, A. Pras, A. Sperotto and G. D. Rodosek, “Flow-Based

Compromise Detection: Lessons Learned”, IEEE Security & Privacy,
vol. 16, no. 1, pp. 82-89, 2018.

[38] DARPA Dataset, https://www.ll.mit.edu/r-d/datasets, [accessed

21-May- 2019]

BIOGRAPHY

Nguyen Thanh Hai is an expert in the IT Center at

Thai Nguyen University. He finished his master
course on Computer science at Thai Nguyen

University in 2012 He has taught a wide variety of

courses for UG students and guided several projects.
He has published several papers in National

Journals. His research interests are network

architecture and network services.

Trinh Van Ha is a lecturer in the Faculty of

Information Technology - University of Information
Technology and Communications, Thai Nguyen. He

finished his master course on Computer science at

Thai Nguyen University in 2008. He has taught a
wide variety of courses for UG students and guided

several projects. He has published several papers in

National Journals. His research interests are network
architecture and computer security.

Nguyen Van Truong is a lecturer in the Faculty of

Mathematics at Thai Nguyen University of

Education. He is currently a PhD student at Institute
of Information Technology, Vietnamese Academy

of Science and Technology. He has taught a wide

variety of courses for UG students and guided
several projects. He has published several papers in

National Journals & International Conferences. His

research interests are embedded systems and
artificial immune systems.

