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 
Abstract—Many applications in real world use linear data 

structures, such as string or vector. The linear data type may 

omit the information at its edges, especially for flow data. In this 

paper, we present a ring representation technique for data. Our 

experiment results on flow-based Network data show that the 

new approach archives prominent classification rates. 
 

Index Terms—Ring data, linear data, classification, 

intrusion, immune system.  

 

I. INTRODUCTION 

  As we known, many applications use two types of linear 

data representation: string and real-valued vector. For both 

popular types, representations are linear structure of symbols 

or numbers. They may omit information at the edges (the 

begin and the end) of these structures and lead to reduce 

classification rates. 

Our idea of new data presentaion originates from an earlier 

empirical implementation on binary ring-based strings. Using 

our ring-typed data representation shows that both detection 

rates and accuracy rate are higher than that of the linear ones, 

while false alarm rates are quite similar. So we use ring 

structures instead of linear ones for more exact classification. 

In this paper, Artificial Immune System (AIS) [1], a 

multidisciplinary research area that combines the principles 

of immunology and computation, is used for experiments on 

the proposed representation. 

AIS is inspired by the observation of the behaviors and the 

interaction of normal component of biological systems - the 

self -and abnormal ones - the nonself. Positive Selection 

Algorithm (PSA) is a popular model of AIS mainly designed 

for one-class learning problems such as anomaly detection.  

The outline of a typical PSA contains two stages [1]. In the 

generation stage (Fig. 1), the detectors are generated by some 

random process and censored by trying to match given self 

samples taken from set S. collection of detectors (or detector 

set) is used to verify whether an incoming data instance is self 

or nonself. 
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Those candidates that match are kept as detectors in set D and 

the rest are eliminated. In the detection stage (Fig. 2), the. If it 

 
 

matches any detector, it is claimed as self, otherwise it is 

nonself or an anomaly. This description is limited to some 

extent, but conveys the essential idea. 

 

 
Fig. 1. Model of detector generation in PSA 

 
Fig. 2. Detection of new instances in PSA 

II. BASIC TERMS AND DEFINITIONS 

In PSAs, an essential component is the matching rule which 

determines the similarity between detectors and self samples 

(in the detector generation phase) and coming data instances 

(in the detection phase). Obviously, the matching rule is 

dependent on detector representation. In this paper, both self 

and nonself cells are represented as binary strings of fixed 

length. This representation is the most simple and popular 

representation of data in AISs, and other representations 

(such as real valued) could be reduced to binary [15, 16]. 

3.1 Strings  

An alphabet Σ is nonempty and finite set of symbols. A 

string s ∈ Σ
*
 is a sequence of symbols from Σ, and its length 

is denoted by |s|. A string is called empty string if its length 

equals 0. Given an index i ∈ {1, 2, . . . , |s|}, then s[i] is the 
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symbol at position i in s. Given two indices i and j, 

whenever j ≥ i, then s[i . . . j] is the substring of s with length 

j − i + 1 that starts at position i and if j < i, then s[i . . . j] is 

the empty string. 

We will use ring structures instead of linear ones for more 

exact classification. A simple solution for this process is to 

concatenate each string with its fist k bits. Each new linear 

string is a ring representation of its original one. Fig. 3 

shows a ring representation (b) and its original string (a) 

with k = 3. 

 

Fig. 3. A ring-based representation (b) of a string (a) 

 Given a set of strings S ⊂ Σ
ℓ
, a set Sr ⊂ Σ

ℓ+r−1
 includes 

ring representations of all strings in S by concatenate each 

string s ∈ S with its fist r − 1 bits. 

Note that we can easily apply the idea of ring strings for 

other data representations in AIS. One way to do this, for 

instance, is to create ring representations of other structures 

such as trees, automata, etc., from set Sr instead of S as usual. 

Our approaches can be implemented on any finite alphabet, 

but strings used in all examples are binary, Σ = {0, 1}, just for 

easy understanding. 

2.2 R-chunk detectors   

Given a set of strings S ⊂ Σ
ℓ
, a tuple (d, i) of a string d ∈ 

Σ
r
, r ≤ ℓ, and an integer i ∈ {1, ..., ℓ} is called an r-chunk 

detector if there exists a s ∈ Sr such that d matches s[i, . . . , i 

+ r − 1]. We also use the notations: Si = {(d, i), (d, i) is a 

positive r-chunk detector} is set of all positive r-chunk 

detectors at position i with respect to Sr, i = 1, . . . , ℓ. 

Example 1. Let ℓ = 5 matching threshold r = 3. Suppose 

that we have the set of four strings S = {s1 = 00000; s2 = 

10110; s3 = 10111; s4 = 11111}. Sr = {0000000; 1011010; 

1011110; 1111111}. S1 = {(000,1); (101,1); (111,1)}, S2 = 

{(000,2); (011,2); (111,2)}, S3 = {(000,3); (110,3); (111,3)}, 

S4= {(000,4); (101,4); (111,4)}, S5 = {(000,5); (010,5); 

(110,5); (111,5)}. 

Given a data set S of string with the same n features, length 

of binary representations of strings is calculated by equation 

ℓ= ∑   
 
    where ki is the smallest integer such that |Di|<   , 

and Di is value domain of feature i. 

2.3 Proposed algorithms 

Given ℓ, r, a normal dataset N ⊂ Σ
ℓ
, an abnormal dataset A 

⊂ Σ
ℓ
. Algorithm 1 creates trees used in the algorithm 2. A 

new data instance s ∈ Σ
ℓ
 is detected as self or nonself by 

Algorithm 2. 

Algorithm 1: Algorithm to generate trees 

1: procedure TreesGeneration(N, r, TA ) 

Input: A set of self strings N ⊆ Σ
ℓ
, a matching 

threshold r ∈ {1, . . . , ℓ}. 

Output: A set TA of ℓ − r + 1 prefix trees presenting 

trees. 

2:   for i = 1, ..., ℓ do 

3:    Create an empty tree TNi 

4:     for all s ∈ Nr do 

5:         for i = 1, ..., ℓ do 

6:             insert every s[i . . . i + r − 1] into TNi   

7:     for i = 1, ..., ℓ do 

8:         Create an empty tree TAi 

9:     for all s ∈ Ar do 

10:         for i = 1, ..., ℓ do 

11:             insert every s[i . . . i + r − 1] into TAi   

Algorithm 2: Algorithm PSA to detect if a new data instance 

s ∈ Σ
ℓ
 is self or nonself.  

1: procedure PSA(N, A, s, r, TN , TA) 

Input: A set of nonself strings N ⊆ Σ
ℓ
, a set of 

self strings A ⊆ Σ
ℓ
, an unlabeled string s ∈ Σ

ℓ
, a 

matching threshold r ∈ {1, 2, . . . , ℓ}. 

Output: A set TA of ℓ − r + 1 prefix trees 

presenting nonself trees, a set TN of ℓ − r + 1 

prefix trees presenting self trees, a label of s 

(self or nonself). 

2:     TreesGeneration(N, r, TA) 

3:     d1 = d2 = d3 = 0 

4:     Create a string sr as ring representation of s 

5:     for i = 1, ..., ℓ do 

6:         s0 = sr[i . . . i + r − 1] 

7:         if  s0  TNi then 

8:             d1 = d1 + 1 

9:         if s0  TAi then 

10:             d2 = d2 + 1 

11:         if Leaf(s0, TNi ) < Leaf(s0, TAi ).t1 then 

12:             d3 = d3 + 1 

13:     if  d1 > t2 then output s is nonself 

14:     else if d2 > t3 then output s is self 

15:     else if d3.t4 > ℓ then output s is nonself 

16:     else output s is self  

III. EXPERIMENTS  

3.1 Datasets  

In our experiments, we use two popular flow-based 

datasets: NetFlow [31] and TU [36]. The flow-based 

NetFlow is generated from packet-based DARPA dataset 

[38]. This dataset focuses only on flows to a specific port and 

an IP address which receives the most number of attacks. It 

contains all 129,571 traffics (including attacks) to and from 

victims. Each flow in the datasets has 10 fields: Source IP, 

Destination IP, Source Port, Destination Port, Packets, 

Octets, Start Time, End Time, Flags, and Proto. 

Other labeled flow-based data set was captured by 

monitoring a honey-pot hosted in the University of Twente 

network, so we call it TU dataset. This dataset has three 

categories: malicious, unknown and side-effect. It has 

14170132 flows which are mostly of malicious nature. 

The NetFlow dataset is used for experiment 1 with features 

Packets, Octets, Duration, Scr port, Dst port, Flags and IP 

protocol. The UT dataset is used for experiment 2 with 

features Packets, Octets, Duration and Flags. 

3.2 Performance  

Table 1 illustrates the results of two experiments. PSA 

cannot train with unlabeled data, so we only use 10% labelled 

dataset, 5998 attack flows and 595 normal flows, for training 

phase in experiment 1. Meanwhile two other algorithms use 

100% dataset for training, in which 90% unlabelled dataset 

used for S4VM. Results from the experiment strongly 
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confirm the efficiency of PSA in comparison with methods 

proposed in [35]. 

In experiment 2, we compare PSA performance with some 

other algorithms run on WEKA 3 with their default 

parameters. The detection rate of PSA is highest among the 

other algorithms, while accuracy is remarkable high. Some 

SVMs achieved admirable accuracies with 100%, but their 

FARs are very high with approximately or even 100%. Poor 

FARs of these algorithms means that they cannot verify the 

nature of benign traffic in the dataset, but PSA can.  

Table 1. Comparison between PSA and other algorithms  

Algorithms ACC DR FAR 

Experiment 1 

PSA (10% labelled data)   0.9781  0.9626   0.0157 

S4VM (10% labelled data) [35]   0.9196  -  0.0384 

EBP - based MLP [35]   0.9655  -  0.0315 

Experiment 2 

PSA   0.9257  0.9974  0.1945 

Naive Bayes   0.6832  0.9972  0.8668 

SVM (linear)   0.7315   1.0000   0.7185 

SVM (polynomial)   0.7143  0.8788   0.5613 

SVM (RBF)   0.6263   1.0000   0.9998 

SVM (sigmoid)   0.6263   1.0000   1.0000 

Deep learning  0.8106  0.8201 Nan 

Recent works focus on deep learning, so we produced 

another experiment using deep learning. In the experiment, 

we use 01 hidden layer, the number of unit on each layer is 

100, activation function is Relu, optimization function is 

Adam, learning rate is 0.001, and number of epochs is 200. 

We can see results from the last row of table 1 that all ACC 

and DR is lower than those of our PSA. 

IV. CONCLUSIONS  

The major contribution of this study is to propose a ring 

representation instead of linear one for better performance in 

terms of both detection rate and accuracy rate. 

To verify the effectiveness of the proposed approach, two 

different datasets are adopted to validate this approach. The 

results from four experiments indicate that the proposed 

approach can produce competitive and consistent classifying 

performance on real datasets. Moreover, results from 

experiment 2 with only 10% of training dataset confirm that 

PSA can detect anomalies in a small amount of labelled data. 

The algorithm can be applied to the data set that has 

following characters: 1- Having strings with equal number of 

features, and 2 - Value domain of all features is discret. 

However, if the domain is continuous, such as real numbers, 

then a good quantification may be used before applying our 

algorithm. 

In the future, we are planning to combine our algorithms 

with some machine learning methods to have better detection 

performance, reduce training time. Moreover, it would be 

interesting to further develop technique how to choose 

optimal parameters as well as to integrate them in new 

objective functions. We also would like to apply the method 

for other security problems with larger datasets. 

To the best of our knowledge, there has not been any 

published attempt in using ring type of data instead of linear 

one to attain more exact classification. 
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