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Abstract— Use of Radial Basis Function Neural Networks to 

predict the time series of river flux data was approached via 

NARMAX methodology. By modifying the network architecture 

in search of the best performance characteristics, it was 

observed that the problem of time series analysis has chaotic 

behavior, which cannot be fully accounted for by use of such 

technology, suggesting the need for more robust machine 

learning techniques. 

 
Index Terms— RBF neural network, NARMAX 

methodology, time series prediction, dynamic systems  

 

I. INTRODUCTION  

  Radial Basis Function (RBF) networks are characterized for 

their use of a unique hidden layer whose neurons’ activation 

functions belong to the class of “radial basis functions”. Such 

a layer augments the dimensionality of input data when it 

maps input to hidden space, and the network’s output is a 

weighted sum of the hidden layer activations. 

  Further, the NARMAX methodology refers to a technique 

for presenting input data to a neural network – be it RBF or 

not. In the context of a network modelling a dynamical system 

whose output is  y t  - where t stands for time, NARMAX 

consists in presenting to the model a history 

      1 , 2 ,..., dy t y t y t t    – where td is the maximum 

delay – of past system outputs, supposing this is enough for 

learning its dynamics. 

  In the following, we present the theory underlying RBF and 

NARMAX, followed by the analysis proposed in this work. 

  Highlight a section that you want to designate with a certain 

style, and then select the appropriate name on the style menu. 

The style will adjust your fonts and line spacing. Do not 

change the font sizes or line spacing to squeeze more text 

into a limited number of pages. Use italics for emphasis; do 

not underline.  

A. RBF Networks 

The architecture known as RBF consists of two layers: the 

first one has m  hidden units, such that the layer’s activation 

functions are  1, , mG G ; the second is composed of l  

neurons, each of which generates a network output, such that 

each output ˆ
iy  computed from input x  is determined by  
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 , where  1w , , wi im  are neural weights 

associated to the i -th output neuron. 

Thus, hidden units, by increasing the dimensionality of 

input data, increase the chance of them becoming linearly 

separable [1]. In this work, we use a “bias” term wi0  in the 

output, such that we have instead  
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   . This 

is equivalent to considering an extra hidden unit with constant 

unitary activation function. We also restrict the analysis to 

Gaussian activation functions, those with the format:  
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Where 
cx  and   are respectively termed centroid and 

standard deviation, both being parameters of the function. 

There are two main types of RBF networks: regularization 

networks and generalized networks. The former possess as 

many hidden units as there are training samples, and there is 

rigorous mathematical support to guarantee the existence of 

solution to the interpolation problem which they solve [2], 

however – owing to their large degree of freedom in terms of 

neural parameters [3] – they are prone to overfit, whence there 

is considerable body of literature describing how to avoid this 

tendency [4], [5]. The latter, on the other hand, align to the 

general principle of the Occam Razor [6], in that their 

centroid count is usually less than the amount of training 

samples by several orders of magnitude, thus reducing the 

likelihood of overfit. From here on, we take “RBF network” 

to mean “generalized RBF network”. 

Several training techniques are known [7], [8]. One of the 

simplest is K-means [9], [10] for centroid coordinate 

computation, and pseudoinverse method for neural weight 

computation.  

K-means attemps to define hidden unit centroids 

 1, , mt t according to the geometry of samples in the 

training set  1, , NI x x , where N I  is the training set 

size and each xi is a training sample. To this effect, over a 

partition  1, , mP P P  of I , we define the “intra-group 

sum of squares”:  
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              (2) 

Centroids are computed by finding P  which minimizes 

 L P , then defining each 
it as the arithmetical average of all 

elements belonging to 
iP . Since this minimization problem is 

NP-hard, usually heuristics are applied, which naturally may 

lead to local optima. 
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Meanwhile, the pseudoinverse method is employed to 

compute output-layer weights after centroids and 

standard-deviations have been fixed. In such a context, and 

considering a scalar-output network (generalizing to 

multidimensional output is immediate), the method defines a 

cost function:  
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Where 
iy  is the expected output for each input 

ix . 

Minimizing C leads to:  
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Where we assume the following notations:  
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B. NARMAX methodology 

For a variety of natural phenomena, physical laws are 

known which can describe and predict their evolution 

quantitatively. When this is the case, physics offers a 

mathematical model through which  the dynamical system 

may be studied. However, there are complex systems for 

which either no structure is known or it is too complex to be 

completely treated computationally. This situation motivates 

the use of empirical formulations in an attempt to analyse the 

problem, one of them being NARMAX [11]. 

In NARMAX formulation, a discrete system with output y  

and input u  is described by [12]:  

          1 , , , 1 , ,y uy t F y t y t n u t u t n       (8) 

Where F is an arbitrary non-linear function, ny is the 

maximum output delay and nu is the maximum input delay. 

Thus, (8) is an approximation to the system under scrutiny. 

 

C. Problem proposal 

This work employs and RBF network coupled with 

NARMAX methodology to predict the flux of Ganges river 

(MG/Brasil) given the history of its flux in the past. The 

solution is implemented in MATLAB, and the combination of 

RBF and NARMAX has precedents in the literature [13]. 

In possession of a database registering monthly flux of 

Camargos and Furnas hydroelectric plants (built along the 

river) during a 82 year interval, we intended to have the 

network learn the river’s dynamics. To this effect, we 

architected the input, hidden and output layers of the model, 

defining – for instance – the maximum delay in presenting 

flux data to the network, the quantity of hidden units, and the 

training algorithm to be used – provided more than one is 

known. 

Varying the architecture choice, we compared all obtained 

results to one another, analyzing how each factor impacted 

network performance. 

 

II. METHODOLOGY 

Fig. 1 illustrates the network architecture. A single network 

processes both power plants’  fluxes, each with 2 delayed 

inputs. Input vector u  is admitted to each of the 1m  hidden 

units, the first of which is constant and equal to 1 (bias) while 

the remaining ones are Gaussian centered in , ,1 mt t  with a 

common standard-deviation  . Finally, the bidimensional 

output is    0

1

ˆ
m

i i

i

G


 y u w w u   - where 
i

w  is a 

bidimensional neural weight and 
i

G  is the radial basis 

function centered on 
i

t  - and represents the next predicted 

flux for each power plant. We adopt the notation 

 
T


0 m

W w w  ( 1m  rows and 2 column) for the neural 

weights matrix. 

 
Figure 1. RBF network. Variables yc and yf  refer to Camargos and Furnas 

plants, and boldface symbols are vectors. Parameters ti, σ and wi must be 

learned by the network. 

A. Training and test sets 

Training the network means deciding on values for 

1 mt ,…,t  ,   and 
0 mw ,…w  . To this effect training 

samples were extracted from aforementioned database, in the 

following format: there were 984 flux measurements for each 

power plant, from  1 f   to  984 f  (Furnas plant) and 

from  1 c  to  984 c  (Camargos plant); for each triplet 

 1 2, ,i i i    , we built a sample such that the input to the 

network is         1 1, , ,i i i i if f c c    u  and the 

expected output is     2 2,i i if c  y ; the 10 last such 

samples were reserved for post-training evaluation of network 

performance (test set), while the remaining 

982 10 972N     constituted the effective training set. We 

adopt the notation  1, NY y y  (2 rows and N columns) 

for the matrix of expected outputs.   

B. Training algorithm 

The first pre-processing procedure was normalizing input 

and output data. This was carried out 

dimension-by-dimension, with the usual process of 

subtracting the mean and dividing by standard-deviation. 

To determine the centroids 
it  of the hidden units, we used 

K-means [10]. 
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Once the centroids had been computed, we used a heuristic 

approach to estimate   [10]:  

max

2

d

m
    (9) 

Where 
maxd  is the maximum centroid-to-centroid distance 

among all centroid pairs. Finally, the weights W  were 

determined with the pseudoinverse method [10], according to 

which:  
TW G Y   (10) 

Where 


G  stands for the pseudoinverse of 1N m   

matrix G  given by:  
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C. Architecture alternatives 

For comparison purposes, all m in the set 

 3,5,10,15,20,50   were utilized so as to evidence the 

influence of centroid quantity over network generalizability. 

Further, we searched for the centroid count (restricted to 

inveral from 2 to 50) which would minimize the squared error 

E over the test set, where E is defined by:  
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Where i loops through the test set,  ˆ
iy u   is the output of 

the network under input 
iu , and 

iy  is the expected output for 

the same input.  

Finally, we experimented varying how many delayed inputs 

the network receives: instead of 2 delayed measurements for 

each power plant (as in Fig. 1), we tried 3 or more 

measurements. 

We note that the quantity of hidden layers was not a theme 

for study because it is already known that single-hidden-layer 

RBF networks are universal function approximators [14].  

 

III. RESULTS AND ANALYSIS 

First we present performances obtained by varying the 

quantity of centroids in the hidder layer in the set 

 3,5,10,15,20,50 . In what follows, we analyze the effects 

of augmenting the quantity of delayed inputs available to the 

network. 

 

A. Network with 3 centroids 

In Fig. 2 and Fig. 4, we observe that the network was not 

capable of capturing the higher frequencies in the time series 

of both plants, besides being clearly delayed in contrast to the 

plants’ dynamics. 

The first mentioned issue refers to the amplitudes of 

oscillation in the plants’s dynamics and in the network’s 

dynamics: the former exhibits peaks that the latter cannot 

capture in the training set. Further, network outputs in the test 

set approximate moving averages of the expected outputs 

(Fig. 3 and Fig. 5). 

 

On the other hand, the second mentioned issue alludes to 

the time delay between network output peaks and power plant 

peaks, visible in the training set. 

 
Figure 2. 3-centroid network performance on training set for Furnas plant 

 

 
Figure 3. 3-centroid network performance on test set for Furnas plant 

 

 
Figure 4. 3-centroid network performance on training set for Camargos 

plant 

 

 
Figure 5. 3-centroid network performance on test set for Camargos plant 

 

B. Network with 5 centroids 

We note in Fig. 6 and Fig. 8 a reduction in time delay 

between expected and predicted peaks. Furthermore, higher 

oscilation frequencies were captured by the network, which 

can be perceived by the concave outline between indexes 6 

and 12 in the test set. 

However, inflexion points in the expected outputs, such as 

as index 6 of Furnas plant (test set) were still not captured by 

the model. 
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Figure 6. 5-centroid network performance on training set for Furnas plant 

 
Figure 7. 5-centroid network performance on test set for Furnas plant 

 
Figure 8. 5-centroid network performance on training set for Camargos 

plant 

 

 
Figure 9. 5-centroid network performance on test set for Camargos plant 

 

C. Network with 10 centroids 

We again notice a reduction in temporal delay between 

expected and predicted fluxes. Further, the network could 

capture another aspect of the chaotic dynamics: it emulated 

the inflexion noticeable in index 6 of the testing set for Furnas 

plant, even though with temporal delay. Quantitatively there 

was progress as well: the squared error in the test set was 

reduced in contrast to previous models. 

 
Figure 10. 10-centroid network performance on training set for Furnas 

plant 

 
Figure 11. 10-centroid network performance on test set for Furnas plant 

 
Figure 12. 10-centroid network performance on training set for Camargos 

plant 

 
Figure 13. 10-centroid network performance on test set for Camargos 

plant 

 

D. Network with larger centroid counts 

The differences between using 15, 20 or 50 centroids are no 

longer noticeable, but we list remaining data for completeness 

(Fig. 14 to Fig. 25). 

 

 
Figure 14. 15-centroid network performance on training set for Furnas 

plant 

 

 
Figure 15. 15-centroid network performance on test set for Furnas plant 
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Figure 16. 15-centroid network performance on training set for Camargos 

plant 

 
Figure 17. 15-centroid network performance on test set for Camargos 

plant 

 
Figure 18. 20-centroid network performance on training set for Furnas 

plant 

 
Figure 19. 20-centroid network performance on test set for Furnas plant 

 
Figure 20. 20-centroid network performance on training set for Camargos 

plant 

 
Figure 21. 20-centroid network performance on test set for Camargos 

plant 

 
Figure 22. 50-centroid network performance on training set for Furnas 

plant 

 
Figure 23. 50-centroid network performance on test set for Furnas plant 

 
Figure 24. 50-centroid network performance on training set for Camargos 

plant 

 
Figure 25. 50-centroid network performance on test set for Camargos 

plant 

E. Effects of centroid count 

To evaluate the effect of centroid count m on network 

performance, we employed the metric of squared error (12) 

on the test set for comparison. Using this metric, we searched 

the interval from 2 to 50 in an attempt to find the optimum 

value for the parameter, with results summarized by Fig. 26: 

 
Figure 26. Squared error on test set for various centroid counts 

 

Above 10, m has few influence on network generalizability. 

F. Networks with more delayed inputs 

We investigated another dimension of architectural 

variation: the quantity of network inputs. In other words, we 

changed the structure illustrated by Fig. 1 to increase the 

maximum delay of inputs to the network. 
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While varying td (the maximum delay) and m (centroid 

count) simultaneously, we searched for the network with least 

mean squared error  (squared error divided by quantity of 

samples) in the test set. The results are illustrated by Fig. 27. 

 

 
Figure 27. Mean squared error on test set as a function of the quantity of 

delayed inputs for each power plant 

 

We observe that increasing maximum delay from 2 to 4 

increased performance, but the opposite happened with 

further increases of delay. Due to the noisy data, however, we 

conjecture that the apparent evolution brought about by 

varying td does not generalize, i.e. it was verified for the test et 

but does not equate to a real improvement in network 

generalizability. The results presented here can be considered 

an alternative method to the one described in [15], where 

Multilayer Perceptrons are employed for the problem of flux 

prediction. 

 

IV. CONCLUSION 

By using time series data about monthly flux measurements 

of two hydroelectric power plants in Grande river, in a 82 year 

interval, we employed RBF networks coupled with 

NARMAX methodology to predict future flux data. The 

network performance indicated that the model cannot 

replicate the highest frequencies of oscillation that 

characterize the real data, even though it can approximate the 

data in periods of low oscillation.  

Furthermore, the divergence between network and 

expected outputs seemed non-reducible through refining the 

model’s architecture. Therefore it is plausible that the 

investigated dynamical system requires more than just its past 

immediately-visible behavior for successful forecasting. 
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