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 

Abstract— The Brushless DC Motor (BLDCM) has been used 

as the primary actuating component in different types of 

dynamic controlled systems. Of particular importance to this 

paper is the control of Miniature BLDCM or very small size 

BLDCM in the sub-micro scale of inertia which finds 

application in many new micro-, nano- and pico-systems. The 

particular control problems being highlighted here is linked to 

the dimensions of the dynamic parts of this device which at some 

extreme approaches almost singular values. This might lead to 

simulation study problems due to presence of singular states in 

the ensuing dynamics. Other unknown dynamic contributors 

such as tribology effects from the gearing play a role which is 

not explicitly shown in the dynamic model but is controlled 

robustly by the sliding mode controller. The design and 

utilization of a robust nonlinear control scheme such as the 

sliding mode controller (SMC) is also presented as a good 

candidate for controlling such uncertain systems. Simulation 

results showed good rise time, no overshoot and settling time of 

6.2s 

 
Index Terms— singular states, robust control, SMC, 

mechatronics, system dynamics, simulation, output tracking 

 

I. INTRODUCTION 

  The Brushless DC Motor (BLDCM) is an often used 

actuator for many control systems. Both the rotary and linear 

types have found use in many mechatronics systems 

demonstrating dynamics that range from the simple to the 

complex [9], [6]. Examples of such systems include DVD 

player drives, Hard drives, precision robotics[10], hobbyist 

rotorcraft, attitude control actuators for very small satellites 

e.g. Reaction and momentum wheel motors, Micro Control 

Moment Gyros(MCMG) [3],[4], telescope control 

mechanisms. With the ever growing need for smaller and 

compact devices or systems, the miniature BLDCM will 

continue to prove valuable in many technological and 

engineering applications. 

 

     Fig. 1 shows the simplified circuit abstraction of a DC 

motor [11]. The distinct division of the system shows the 

coupled electrical and mechanical subsystems. From Fig.1, 

the main dynamic contributors will be the Electrical inductor 

and the rotary mass or inertia component. 
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Figure 1: Equivalent BLDCM circuit diagram 

The ability to study these systems offline is important, as 

valuable hardware is preserved or protected from damage 

which can result from direct online control testing. Also the 

tuning requirements for these controllers makes online testing 

a less attractive option for controller experimental studies 

since imprecise test parameters e.g. gains, could result in 

damages by burn-out of BLDCM hardware and damage to 

other control circuitry. The control of such systems using 

standard classical linear control techniques like the 

Proportional-Integral-Derivative (PID) controller, proves 

inadequate to handle the complex (inherently nonlinear) and 

fast dynamics resulting from small component values and by 

extension extremely fast and analogous electrical and 

mechanical time constants. These dimensional parameter 

variances are studied in this work for a coupled controller and 

BLDCM system using a robust SMC [12] 

 

     However, simulation studies considering the amelioration 

of the control effort in such miniature actuators, must address 

the constraints driven by the physics of the device [12]. This 

amelioration of control effort must be handled with a robust 

controller [8], [2]. The robust controller being proposed 

utilizes a sliding mode algorithm (SMA) to compensate for 

unmodelled dynamic effects and external load-torque 

variations which could contribute parasitic dynamic behavior 

to the output of the BLDCM. The proposed scheme has the 

merit of permitting detailed offline simulation studies on the 

system before any real-time experiments with the actual 

device. This will naturally reduce cost of system design and 

development [15]. 

 

     The rest of the paper is organized as follows: Section 2 

presents the BLDCM dynamic model, Section 3 addresses the 

development of a suitable Sliding model controller (SMC) for 

the BLDCM, and Section 4 details the simulation, analysis 

and discussion of results while it concludes in Section 5. 
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II. BLDCM EQUATIONS 

 

     The model for the BLDCM analysis is abstracted from Fig. 

1. The derived model is linear in the coefficients and also time 

invariant, making it directly both suitable for simulation and 

control.  
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The already simplified dynamic of this system is as given in 

(1a)-(1c) and reflects the control direction being proposed for 

this work, which is continuous and precise angular position 

and angular velocity control. 

Where the state vector of the system x = [x1; x2; x3] is 

obtained from [ , ,i   ]. Equation (2), represents the state 

space formulation with i, ω selected as the BLDCM system 

state. 
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Since   is easily derived from the integral of the angular 

velocity , an extended form of (2), is given by (3), which 

considers the angular displacement dynamic also 
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III. SLIDING MODE CONTROLLER FOR BLDCM 

 

     Sliding mode control is selected as the controller of choice 

for the BLDCM because of uncertain model characteristics. 

The small scale of the BLDCM creates a unique set of 

unknown and generally nonlinear characteristics that do not 

necessarily show in the system model of (1a-1c). Drawing 

from the characteristics of sliding mode control which include 

infinite time convergence, robustness to model uncertainties 

and ease of implementation, we proceed to design the angular 

velocity and position sliding mode controllers. 

 

A. Overview of Sliding Mode Controller Design 

     The sliding mode controller is designed in two parts 

vis-a-viz the choice of sliding surface and the synthesis of a 

control law which comprises an equivalent control,( Ueq) and 

a nominal control part, (Un)  [1],[6],[?]. 

 

    Usm Ueq Un       (4) 

, where the nominal control Un is given by 

 

sgn( ( ))n eU S w           (5) 

 

, with sgn (.), the signum function generally defined as; 
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, for chattering suppression a saturation function is chosen for 

Un. Other chattering suppression functions exist such as the 

hyperbolic function and sigmoid function [14]. 
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, where K is a sufficiently large positive constant [13]. 

The sliding surface is given by a linear function of the 

computed error and the error derivatives, 

 

1(.) ( ) ( )nd
S p e t

dt

       (8) 

 

, where n-1 is the number of error derivatives to be added. 

Otherwise stated, n-1 describes the relative degree of the 

system output while e is the computed instantaneous error. 

 

B. Angular Velocity SMC Design for BLDCM 

 

     Utilizing the second order state space model of (2), the 

error on the angular velocity variable   is 
re    . ωr 

and ω represents the reference and actual angular velocities 

respectively. This yields the second order sliding surface 

given by (9) respectively. 

 

( ) ( ) ( ) ( )r r

d d
Se p p e

dt dt
             (9) 

 

Otherwise written as 

 

( )Se e pe                              (10) 

 

, with necessary conditions for sliding surface existence being 

Se (0) = 0, Se (0) = 0 

 

( )Se e pe                             (11) 

 

, further parameter simplification utilizes the composed 

parameters defined as a = R/L; b = r/L; c = r/Jm; d = Rm/Jm; e 

= Tl/Jm, the equivalent control on the angular velocity is 

obtained as 
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With U*=Ueq, the complete SMC defined on the velocity 

surface requires the nominal term Un 
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, the complete SMC for the angular velocity becomes the 

composite control in (4). 

 

C. Position SMC Design for BLDCM 

 

     The position sliding mode controller is designed similarly 

on a state space of third order comprising the state vector x = 

[ , ,i   ]. The sliding surface is defined on 

 

2( ) ( )
d

Se p e
dt

                    (14) 

 

With the derivative of xxx being 

 
2( ) 2Se e pe p e                                (15) 

 

Where the error eθ =θr-θ. Further algebra on the sliding 

surface yields the equivalent control on the angular position 

as 
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, with U* =Ueq, the nominal control is added to complete the 

SMC formulation as 
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IV. SIMULATION & ANALYSIS 

     Motor parameters are obtained from the data sheet [9]. 

System parameters for the BLDCM are defined as: p = 1; r = 

0.749; R = 1.47; L = 9e
-4

; Rm = 0.0029; Jm = 3.18e
-4

; Tl = 10. 

The choice of the positive parameter p is almost arbitrary, r is 

the motor torque constant, R the resistance, L is inductance, 

Rm the damping constant, Jm the rotor inertia & Tl, the load 

torque. The SMC parameters have ranges 5000 < K < 15000 

for the positive constant K and the boundary layer width 

parameter varies between 50 <  < 500. Simulation 

experiments for angular velocity and position were 

performed. Some of the results are shown in the Figures 

below. 

 

Fig. 2-3 show simulation result for the angular velocity 

tracking. It shows the reference angular velocity, the output 

angular velocity and the error between the reference and 

output 

 

Figure 2: BLDCM Sliding Mode Angular Velocity Output Tracking 

 

Figure 3: Angular Velocity Output Tracking & Tracking error 

Tracking results for angular displacement are shown in Fig. 

4-5. Any desired reference angular displacement is selected 

between 0 and 2π rad (i.e. between 0 & 360 degrees). 

 

Figure 4: SMC Angular Displacement Output 
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Figure 5: SMC Angular Displacement Output and Tracking error 

 

A. Discussion & Comments on Simulation Results 

 

     The simulation results show a good tracking of the 

reference signals for both angular velocity and angular 

position control. Very importantly, the steady state error 

almost asymptotically tends towards zero in both cases i.e. 

with an exponential rate of convergence. We also have seen 

the system react with quick response time. The response of the 

BLDCM system is very parameter sensitive and dependent on 

the physical dimensions of the subcomponents as was seen in 

the response curves when load torque was inserted. As the 

motor rotor inertia exceeded the 10
-6

 range, singular dynamic 

effects became prevalent with the simulation encountering 

singular states during execution. The primary parameters 

which contribute to this sensitivity include the rotor inertia 

and motor inductance which coincidentally form the primary 

energy storage elements and dynamic contributors to the 

system model. 

V. CONCLUSION 

     Two sliding mode controllers have been designed for a 

miniature BLDCM and experimented with in simulation. The 

experiments show a good tracking of the reference signals for 

both the second order angular velocity SMC and the third 

order angular displacement SMC. However it was observed 

that the higher order SMC was more sensitive to parameter 

changes. We suggest the addition of an adaptive control 

scheme such as fuzzy SMC (FSMC [10]) or FSMC with 

genetic algorithm (FSMCGA) in further work so as to 

mitigate against this sensitivity. 
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