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 

Abstract— A scheme for the synchronization of two chaotic 

oscillators is proposed when a mismatch between the parameter 

values of the systems to be synchronized is present.  We have 

shown how the proposed Monte Carlo optimization search 

algorithm can be used to adapt the parameters in two coupled 

systems such that the two systems are synchronized although 

their behaviour is chaotic and they have started with different 

initial conditions and parameter settings.  The Markov chain 

sampling is a powerful tool for the optimization of complicated 

objective functions.  It is introduced in order to more efficiently 

search the domain of the objective function.  In many 

applications these functions are deterministic and randomness.  

The maximum statistics converge to the maximum point of 

probability density which establishing links between the 

Markov chain sampling and optimization search.  This 

statistical computation algorithm demonstrates convergence 

property of maximum statistics in large samples and it is global 

search design to avoid on local optimal solution restrictions.  The 

controlled system synchronizes its dynamics with the control 

signal in the periodic as well as chaotic regimes.  The method can 

be seen also as another way of controlling the chaotic behaviour 

of a coupled system.  In the case of coupled chaotic systems, 

under the interaction between them, their chaotic dynamics can 

be cooperatively self-organized.   

 

 

Index Terms— nonlinear dynamical system, adaptive 

synchronization, Monte Carlo, Markov chain 

 

I. INTRODUCTION 

  Synchronization of chaos is a cooperative behavior of 

coupled nonlinear systems with chaotic uncoupled behavior.  

This behavior appears in many physical and biological 

processes.  It would seem to play an important role in the 

ability of complex nonlinear oscillators, such as neurons, to 

cooperatively act in the performance of various functions.  In 

recent years, there has been particular interest in the study of 

chaos synchronization of similar oscillators.  Such 

synchronization strategies have potential applications in 

several areas, such as secure communication [1] [2] and 

biological oscillators [3] [4] [5].  In most of the analysis done 

on two coupled chaotic systems, the two systems are assumed 

to be identical.  In practical implementations this will not be 

the case.  In this paper, we study the synchronization of two 

coupled nonlinear, in particular chaotic, systems which are 

not identical.  We show how adaptive controllers can be used 

to adjust the parameters of the systems such that the two 

systems will synchronize. 
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We first present the problem we are dealing with in a 

mathematical fashion then we discuss the general principle of 

the proposed sampling algorithm and explain how to use this 

algorithm for conformational search.  Finally, we present our 

computational results. 

II. COOPERATIVE SELF-SYNCHRONIZATION OF COUPLED 

CHAOTIC SYSTEMS 

One of the properties of oscillations generated by nonlinear 

dynamical systems is their ability to be synchronized.  

Synchronization between periodic oscillations of mutually 

coupled dynamical systems is a well-known phenomenon in 

physics, engineering and many other scientific disciplines.  

Chaos synchronization may seem unlikely due to the extreme 

sensitivity of chaos to initial conditions as well as small 

random disturbances and parameter variation.  However, it 

has been realized that even chaotic systems may be coupled in 

a way such that their chaotic oscillations are synchronized.  

Mutual synchronization can be considered as a form of 

cooperative self-organization of interacting systems.  In 

contrast to the case of coupled periodic systems, even in the 

case of coupled chaotic systems, under the interaction 

between them their chaotic dynamics can be cooperatively 

self-organized.  When this phenomenon occurs there is 

complete or almost complete coincidence of regular or 

chaotic realizations generated by identical or almost identical 

systems with different initial conditions.  We consider the 

case of synchronized chaos where two coupled systems 

evolve identically in time.  Given two chaotic systems, the 

dynamics of which are described by the following two sets of 

differential equations: 

)(xfx                  (1) 

)(yfy                  (2) 

where nRx , nRy , and nn RRf :  is a nonlinear 

vector field, systems (1) and (2) are said to be synchronized if 

e(t) = (y(t) − x(t)) → 0,  t→∞                (3) 

where e represents the synchronization error.  A common 

system to study such synchronized behavior is the system of 

two uni-directionally identical coupled oscillators 

    )(xfx                  (4) 

    ))(,(
~

xhyfy               (5) 

where x and y are n-dimensional vectors, mn RRh : , m ≤ 

n, and )())(,(
~

xfxhxf  .  This condition implies existence 

of an invariant n-dimensional synchronization manifold x = y. 

If z(t) is a chaotic solution of )(xfx  , then a synchronous 

chaotic state is defined by x = y = z(t), and it resides on the 

manifold.  In the following the first and second oscillator (4) 

and (5) will be called drive and response, respectively.  To 

emphasize the drive-response nature of equations (4) and (5), 
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one can rewrite equation (5) as 

   ))(,(
~

tsyfy                 (6) 

where s(t) is a driving signal, and hence, equation (5) can be 

considered as a special case of a system driven by chaotic 

signals.  Following [6], synchronization of uni-directionally 

coupled systems may be defined as follows: 

 

Definition 1. The response system (5) synchronizes with the 

drive system (4) if the synchronization manifold 

}:),{( yxRRyxM nn   

is an attracting set with a basin of attraction 

MBBB yx   such that: 

0||)()(||lim 


tytx
t

, Byx  ))0(),0(( . 

 

We will explicitly examine one type of drive-response 

coupling for identical systems that have chaotic uncoupled 

dynamics.  Assume the dynamics of the driving system is 

given by equation (4). In the presence of coupling the 

dynamics of the response system becomes 

)()( yxEyfy             (7) 

where E is a vector function of its argument and represents 

coupling between the systems.  We assume E(0) = 0, hence 

synchronization occurs on the invariant manifold given by x = 

y. 

 

III. ERROR-FEEDBACK COUPLING AND OBSERVER DESIGN 

FOR SYNCHRONIZATION 

The problem just described is closely related to the observer 

problem from control theory.  An observer is a typical device 

designed for estimation of unknown state vectors of a 

dynamical system.  Observers are often used in control 

systems. In the case of error-feedback synchronization 

(equation (7)), design of the feedback and analysis of the 

stability of the error system can be viewed as a special case of 

the observer design problem, which is well known in the 

control theory literature.  The formalism offered via the 

observer theory allows us to provide a reasonable 

comprehensive framework for synchronization issues.  A 

standard approach in solving the observer problem in control 

theory is to use as receiver a copy of the transmitter (of course 

with unknown initial state) modified with a term depending on 

the difference between the received signal and its prediction 

derived from the observer.  The synchronization problem 

requires one to establish global asymptotic stability for the 

zero solution of the error dynamics, the dynamics governing 

the difference between the transmitter state and observer state.  

An observer is a dynamical system designed to be driven by 

the output of another dynamical system (plant) and having the 

property that the state of the observer converges to the state of 

the plant.  More precisely, the following definition [7] [8] is 

given. 

  

Definition 2. Given dynamical system 

  )(xfx                   (8) 

and let mRxhs  )(  be an output of the system or an 

observed signal, the dynamical system 

  ))(()( yhsgyfy             (9) 

is said to be a nonlinear observer of system (8) if y converges 

to state x as t→∞, where mm RRg :  is a suitably chosen 

nonlinear function.  

 

Moreover, system (9) is said to be a global observer of system 

(8) if y → x as t → ∞ for any initial condition y(0), x(0).  The 

pair (f, h) is called observable, if the full state vector x can be 

reconstructed from the signal s.  Furthermore, system (9) is a 

(global) observer of system (8) if the error system 

e = f(y) + g(h(x) − h(y)) − f(x) 

= f(x + e) + g(h(x) − h(x + e)) − f(x) 

=  (e, t)                  (10) 

has a (globally) asymptotically stable equilibrium point for e 

= 0 [8].  For example, if f and h are linear transformations 

given by )(xAx   and s = Cx where A is an n × n matrix and 

C is a 1 × n matrix, then g = KC(x − y) is chosen in such a way 

that the equation: 

 e˙ = x˙ − y˙ = (A − KC)(x − y) 

has an asymptotically stable fixed point at the origin, that is, A 

− KC is a stable matrix.  Sufficient and necessary conditions 

for the existence of such an n × 1 gain matrix K are given, for 

example, in [7].  Consider the nonlinear system given below  

    )()( xgxAx    , s = Cx,        (11) 

where nnRA 
 is a constant matrix with certain plant 

parameters denoted by μ, nmRC 
 is a constant matrix, 

nn RRg :
 is a differentiable function. Assume that 

g  

satisfies the following Lipschitz condition: 

||||||)()(|| jiji xxxgxg  
, n

ji Rxx  ,  (12) 

where ρ > 0 is a Lipschitz constant.  For the system given by 

(11), we choose the following observer for synchronization: 

)ˆ()()( ssKxgxAx  
 , Cys ˆ     (13) 

where mnRK   is a gain matrix to be determined.  In this 

formulation, equation (11) represents the drive system, and 

equation (13) represents the response system.  The output s of 

the drive system is used in the response system and the 

problem is to choose the gain K so that the solutions of the 

equations (11) and (13) asymptotically synchronize, i.e. 

0||)()(||lim 


tytx
t

.  The observer given by equation (13) 

is known as the full order observer (see e.g. [9]).  Let us define 

the synchronization error as e = x − y.  By using equations (11) 

and (13) we obtain the following error equation 

)()()( ygxgeKCAe         (14) 

It has been shown that there exists a gain vector K such that 

the system (13) is an exponential observer for (11).  For 

details and the procedure to determine the gain vector see 

[10]. 

Remark 1 For observable pair ),( AC , there always exists a 

matrix K such that KCAAc  
  is stable.  For some pairs 

),( AC   there may exist a matrix K such that cA  is stable, 

even if the pair is not observable. Such pairs are called 

detectable (see e.g. [11]). 

 

Remark 2 The condition (12) may seem too restrictive. 

However for chaotic systems, the trajectories always remain 

in a bounded region of the state space.  Hence whenever 

)(xg
 differentiable, a Lipschitz condition can be found in 

that bounded region. 
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Remark 3 The above observer construction scheme is still 

valid when the system is not in the form equation (11) but can 

be transformed into this form by a coordinate transformation.   

 

Note that we have assumed that the chaotic systems (equation 

(11)) consists of a linear part plus a nonlinear part.  This is 

common to a wide class of systems such as the Duffing 

oscillator, the Chua circuit and the Lorenz equation.  For 

example, consider the Duffing equation [12]: 

)cos(3

1 tqxxpxpx         (15) 

The state space description of Duffing equation is 

   
21 xx                    (16) 

    )cos(2

3

1112 tqpxxxpx        (17) 

It is well known that the solutions may exhibit chaos for 

particular parameter combinations.  We note that the system is 

in the form of (11) when 
1xs   is chosen as output.  The 

matrix pair ),( CA
  with 













pp
A

1

10


, C= (1 0)        (18) 

is observable whenever 01 p . A full observer may be 

constructed as 

)( 11121 yxkyy                       (19) 

)()cos( 1122

3

1112 yxktqpyyypy      (20) 

By appropriate selection of the gain TkkK )( 21  the error 

dynamics eKCAe )(  
  can be made asymptotically stable. 

 

IV. CHAOS SYNCHRONIZATION THROUGH PARAMETER 

ADAPTATION 

 

The error-feedback coupling described in the previous section 

can synchronize the trajectory of a nonlinear system to a 

desired unstable orbit, provided the desired unstable orbit has 

the same parameter values as the system under control. If 

there are deviations in the system parameters the 

synchronization will be degraded.  In order to avoid no 

synchronization in the case of parameter mismatch, we 

introduce an adaptive algorithm that allow us to adapt the 

receiver’s parameter to the transmitter one and synchronize 

chaotic signal. Consider two chaotic systems with evolution 

equations ),( xxfx  , ),( yyfy  , where 
x , 

y  are 

parameters of the systems.  Complete synchronization 

between the drive and response can be realized by matching 

the parameters of the response to that of the drive through a 

loop of adaptive control.  This is implemented by augmenting 

the evolution equation for the dynamical system by an 

additional equation for the evolution of the parameter(s) as 

described below. 

),( xxfx   

),(),( yxFyfy y    

)( Gy  

Here, F(x, y) denotes coupling between the drive system (x) 

and the response system (y).  The function G acts on the 

Monte Carlo optimization as presented in the next section.  A 

block diagram for this adaptive synchronization mechanism is 

shown in Figure 1.  The scheme is adaptive since in the above 

procedure the parameters which determine the nature of the 

dynamics self-adjust or adapt themselves to yield the desired 

dynamics.  Using such an adaptive control function the drive 

system and the response system eventually synchronized, 

although their behavior is chaotic and they have started with 

different initial conditions and parameter settings. 

 

Our aim is to devise an algorithm to adaptively adjust the 

parameters in the secondary system,
y , until the system 

variables, y, and the parameters themselves converge to their 

counterparts in the primary system, i.e., both xy   and 

xy   .  In this way, synchronization between both systems 

is achieved and the parameters of the primary system are 

identified. Let NT

N Rxxxx  ],,,[ 21   be the state 

vector of the chaotic system, x  is the derivative of the state 

vector x. Based on the measurable state vector 
T

Nxxxx ],,,[ 21   , for particle i, we define the following 

fitness function  

fitness =



k

t

iNNi txtxtxtx
0

22

11 )))()(())()(((   

where t = 0, …, k. Therefore, the problem of parameter 

identification is transformed to that of using the Monte Carlo 

optimization to search for the suitable value of the parameter 

y  such that the fitness function is globally minimized. 

 

Reconstruction of chaotic systems using chaotic 

synchronization 

 

The chaos synchronization described in this section can also 

be used to the parameter identification of chaotic systems.  In 

practical applications we may know a good deal about the 

structure of the system. In many cases, only a set of 

parameters in the system are needed to be determined.  Thus 

the problem is reduced to the parameter identification.  For 

the purpose of the parameter identification, a special system 

has been designed.  When this specific system has the same 

parameters as those of the original unknown system whose 

parameters are unknown, these two systems are synchronized 

under one single driving signal from the unknown system.  In 

general, they have different parameters in the beginning and 

are not synchronized.  But, the parameters of the special 

system can be tuned so that the two systems are synchronized.  

Therefore, the parameters of the unknown system are 

obtained. 

Let ),( xxfx   be the dynamical system whose parameters 

m

x R are to be estimated. The only information available is 

a time series s(t) given by a (scalar) observable s = h(x) and 

the structure of the model f. Furthermore, let us assume that 

we are able to construct a dynamical system ),,(
~

yysfy   

that synchronizes (y → x for t→∞) if 
yx   . If the 

functional form of the vector field f is known, such a system 

can be constructed by the method described in this paper.  

This method observes the previous time series of a single 

variable.  However, when the parameters are identified, the 

future time series of all variables can be predicted. 
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Figure 1. Synchronization of two coupled chaotic systems 

 

V. MARKOV CHAIN MONTE CARLO 

Markov chain Monte Carlo methods are a class of 

sample-generating techniques by controlling how a random 

walk behaves.  It attempts to directly draw samples from some 

complex probability distribution based on constructing a 

Markov chain that has the desired distribution as its 

equilibrium distribution.  The state of the chain after a large 

number of steps is then used as a sample of the desired 

distribution.  The quality of the sample improves as a function 

of the number of steps.  Usually it is not hard to construct a 

Markov chain with the desired properties.  The more difficult 

problem is to determine how many steps are needed to 

converge to the stationary distribution within an acceptable 

error.  The Markov chain Monte Carlo has become a powerful 

tool for Bayesian statistical analysis, Monte Carlo 

simulations, and potentially optimization with high 

nonlinearity.  There are many ways to choose the transition 

probability, and different choices will result in different 

behaviour of Markov chain.  In essence, the characteristics of 

the transition kernel largely determine how the Markov chain 

of interest behaves, which also determines the efficiency and 

convergence of Markov chain Monte Carlo sampling.  There 

are several widely used sampling algorithms, such as 

Metropolis-Hasting Algorithm [13] and Gibbs Sampler [14]. 

 

A. Metropolis-Hastings Sampling Algorithm 

The basic idea of Markov chain Monte Carlo methods is to 

construct a Markov chain with the specified stationary 

distribution, namely )( , then run the chain with full length 

till the sample chain value close enough to its stationary 

distribution. Then take stationary chains as the samples of 

)( and make variety of statistical inference based on these 

samples. The most popular Markov chain Monte Carlo 

sampling method is Metropolis-Hastings algorithm, which 

means sampling starts from another easily known reversible 

Markov chain Q, and obtain the new Markov chain by 

comparing.  It generates a random walk using a proposal 

density and a method for rejecting proposed moves. 

To draw samples from the target distribution, we let 

)()(  p , where   is a normalizing constant which 

is either difficult to estimate or not known.  We will see later 

that the normalizing factor   disappear in the expression of 

acceptance probability.  The Metropolis-Hastings algorithm 

essentially expresses an arbitrary transition probability from 

state   to   as the product of an arbitrary transition kernel 

),( q  and a probability ),(  .  That is, 

 ),(),()(),(  qPP   

 

Here q  is the proposal distribution function, while ),(   

can be considered as the acceptance rate from state   to   , 

and can be determined by 

 

  
















 1,
,)(

),()(
min1,

),()(

),()(
min),(










qp

qp

q

q
 

The essence of Metropolis-Hastings algorithm is to first 

propose a candidate * , then accept it with probability  .  

That is, *

1  t
 if u  where u is a random value drawn 

from an uniform distribution in [0, 1], otherwise 
tt  1
.  It 

is straightforward to verify that the reversibility condition is 

satisfied by the Metropolis-Hastings kernel 

)(),(),()(),(),(  qq  ,  

for all  , .  Consequently, the Markov chain will converge 

to a stationary distribution which is the target distribution 

)( . 

In a special case, when the transition kernel is symmetric is its 

arguments, or ),(),(  qq  , for all  ,  , then the 

acceptance rate ),(   become 









 1,
)(

)(
min),(






p

p , 

 

And the Metropolis-Hastings algorithm reduces to the classic 

Metropolis algorithm.  In this case, the associated Markov 

chain is called as symmetric chain.  In a special case when 

1  is used, that is the acceptance probability is always 1, 

then the Metropolis-Hastings degenerates into the classic 

widely used Gibbs sampling algorithm.  However, Gibbs 

sampler becomes very inefficient for the distributions that are 

non-normally distributed or highly nonlinear. 

 

B. Random Walk and Levy Flight 

A random walk is a random process which consists of taking a 

series of consecutive random steps.  The sum of each 

consecutive step which is a random step drawn from a random 

distribution forms a random walk.  It means the next state will 

only depend on the current existing state and the transition 

from the existing state to the next state.  This is typically the 

main property of a Markov chain.  If the step size obeys the 

Gaussian distribution, the random walk becomes the 

Brownian motion.  In theory, as the number of steps increases, 

the central limit theorem implies that the random walk should 

approaches a Gaussian distribution.  If the step size obeys 

other distribution, we have to deal with more generalized 

random walk.  A special case is when the step size obeys the 

Levy distribution, such a random walk is called a Levy flight 

or Levy walk.  Levy flight is a random walk whose step length 

is drawn from the heavy-tailed Levy distribution often in 

terms of a simple power law formula.  It is worth to point out 

that a power law distribution is often link to some scale free 

characteristics, and Levy flights can thus show self-similarity 

and fractal behaviour in the fight patterns. 
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VI. MARKOV CHAIN SAMPLING FOR OPTIMIZATION 

SEARCH 

 

A simple random walk can be considered as a Markov chain.  

In a probability distribution, the largest density area is mostly 

tending to be sampled.  So the sampling density function 

should converge to the maximum point of maximum 

probability if the sample is sufficiently large.  Thus 

establishing links between the function maximum value and 

sampling extreme statistics.  We can use Markov chain Monte 

Carlo to simulate a sample of this distribution.  And the 

optimal will appear most frequently in the sample.    That is, 

the optimal state will have the greatest probability. 

Suppose that we are interested in exploring solutions x   that 

minimize an objective function R)( xf , where 

n

n Rxxx  ),...,( 1
.  That is, if we want to find the minimum 

of an objective function R)( xf at *xx  so that 

)()( ** xfxff  .  We can convert it to a target distribution 

for a Markov chain 
)()( xfex    

where 0  is a parameter which act as a normalized factor.  

  should be chosen so that the probability is close to 1 when 

*xx . At *xx  , )()( ** xx   .  This often requires 

that the formulation of )(xf  should be non-negative, which 

means that some objective functions can be shifted by a large 

constant 0C   if necessary.  Then, a Markov chain is 

constructed to sample )(x .  Typically, the solutions in the 

vicinity of the global minimum of )(xf  are most likely to be 

drawn in the sampling process.  Therefore, Markov chain 

Monte Carlo can also be used for optimization purposes.  To 

design a Markov chain with stationary distribution )(x , the 

maximum point in finite sampling from distribution )(x  will 

be sufficiently close to the maximum point of )(xf  in the 

feasible region.  When the transition kernel is symmetric is its 

arguments, or ),(),( yxqxyq tt  , then the acceptance rate 

),( yxt  become 



















)(

)(
,1min

),()(

),()(
,1min),(

ttt

t
t

x

y

yxqx

xyqy
yx








  

The proposed Markov chain sampling for optimization search 

algorithm is:  

 

(1) Start with
0x , at  0t ,  

0

*

0 xx   

(2) Propose a new solution y  

(3) Drawn u  from the uniform distribution )1,0(U   

(4) Compute 










)(

)(
,1min),(

t

t
x

y
yx




  

(5) Take 










)-1y probabilit(with 

)y     probabilitwith (
1





ux

uy
x

t

t
 

(6) Take 















)()(

)()(

1

*

1

1

**

*

1

ttt

ttt

t
xfxfx

xfxfx
x       

 

Repeat (2) to (6). If the iteration times are large enough, then 

*

tx  will convergence to the maximum point of the objective 

function )(xf  in distribution. We can see from the problem 

analysis above that the key points of Markov chain sampling 

method are designing of general probability density function 

)(x and uniform sampling from conditional constraint 

region. 

 

In order to solve an optimization problem, we can search the 

solution by performing a random walk starting from a good 

initial but random guess solution.  However, to be 

computationally efficient and effective in searching for new 

solutions, we can keep the best solutions found so far, and to 

increase the mobility of the random walk so as to explore the 

search space more effectively.  We can find a way to control 

the walk in such a way that it can move towards the optimal 

solutions more quickly, rather than wander away from the 

potential best solutions.  These are the challenges for the most 

meta-heuristic algorithms.  The same issues are also important 

for Monte Carlo simulations and Markov chain sampling 

techniques.  An important link between Markov chain and 

optimization is that some heuristic or meta-heuristic search 

algorithms such as simulated annealing use a trajectory-based 

approach.  They start with some initial random solution, and 

propose a new solution randomly.  Then the move is accepted 

or not, depending on some probability.  It is similar to a 

Markov chain.  In fact, the standard simulated annealing is a 

random walk.  Simulated annealing is a probabilistic method 

for finding global minimum of some cost function introduced 

by Kirkpatrick et al. [15].  It searches local minimum, and 

finally stays at the global minimum given enough time.  This 

sampling method was originally extended from Metropolis 

Algorithm [16] by implanting a temperature function T.  T is 

used to control the difficulty for the stochastic sampler to 

escape from a local minimum and reach the global optimal for 

a non-optimal state.  Algorithms such as simulated annealing 

which use a single Markov chain may not be very efficient.  In 

practice, it is usually advantageous to use multiple Markov 

chains in parallel to increase the overall efficiency.  In fact, 

the algorithms such as particle swarm optimization can be 

viewed as multiple interacting Markov chains, though such 

theoretical analysis remains almost intractable.  The theory of 

interacting Markov chains is complicated and yet still under 

development.  However, any progress in such areas will play a 

central role in the understanding how population- and 

trajectory-based meta-heuristic algorithms perform under 

various conditions. 

 

In addition, a Markov chain is said to be ergodic or 

irreducible if it is possible to go from every state to every state.  

Furthermore, the use of a uniform distribution is not the only 

way to achieve randomization.  In fact, random walks such as 

Levy flights on a global scale are more efficient.  On the other 

hand, the track of chaotic variable can travel ergodically over 

the whole search space.  In general, the chaotic variable has 

special characters, i.e., ergodicity, pseudo-randomness and 

irregularity.  To enrich the searching behavior and to avoid 

being trapped into local optimum, chaotic sequence and a 

chaotic Levy flight can be incorporated in the meta-heuristic 

search for efficiently generating new solutions.  In the paper 
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[17], we presented synergistic strategies for meta-heuristic 

optimization learning, with an emphasis on the balance 

between intensification and diversification.  We showed some 

promising efficiency for global optimization.  Interestingly, it 

can be viewed to link with optimization search and Markov 

chain sampling under appropriate conditions. 

 

 

VII. SIMULATION RESULTS 

For the numerical experiment, we consider a nonlinear 

oscillator, whose dynamics are described by the Duffing 

equation [12]: 

   )cos(3

1 tqxxppxx         (21) 

where p = 0.4, 
1p  = −1.1, ω = 1.8. 

This equation can be used to model various physical 

phenomena.  By varying the forcing amplitude q, the system 

will undergo several types of bifurcations, ranging from a 

regular periodic evolution to chaos.  The evolutions of two 

chaotic Duffing oscillators, when starting from different 

initial conditions )2,0())0(),0(())0(),0(( 21  xxxx  , 

)0,1())0(),0(())0(),0(( 21  yyyy  and different parameter 

values q for time period 00 t  to 50ft , are shown in 

Figure 2.  As shown, with different parameters 10.2 xqq  

and 00.2 yqq , the solutions of (21) displays chaotic 

responses.  In order to synchronize the two chaotic systems, 

we apply our adaptive controller for synchronization of the 

drive (x) and response (y) systems.  The system that we are 

investigating is given by the following system of equations: 

 )cos(3

1 tqxxppxx   

)()cos(3

1 yxktqyyppyy y       (22) 

 )( Gq y
  

The function G acts on the Monte Carlo optimization as 

presented in this paper for adaptive synchronization.  Our 

simulation results show that the adaptive controller produces 

the desired synchronization after a relatively short transient 

period.  Figure 2 shows the error trajectories and the 

parameter q.  In Figure 3 (f) we show the convergence of the 

perturbed parameter 
yq  to its desired value 

xq  from which 

the desired trajectory was constructed, when the Duffing 

oscillator is controlled to drive its trajectory to a desired 

chaotic orbit.  The convergence of the system variables 

),(),( 21 yyyy   to the desired chaotic orbit 

),(),( 21 xxxx    are also shown in Figure 3 (a) and (b), 

respectively.  The dynamics of the two component of the error 

system are shown in Figure 3 (d) and (e). 

 

 

 

 

 

 

Figure 2. Chaotic orbits of the Duffing equation: (a)(b)(c) q = 2.10,    (d)(e)(f) 

q = 2.00 

 

Figure 3.   Synchronization between two chaotic systems described by   

Duffing equations 
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VIII. CONCLUSION 

Markov chain Monte Carlo is a family of simulation methods, 

which generate samples of Markov Chain processes.  In this 

paper, we set up a framework of Markov chain sampling for 

optimization search.  We have shown how the proposed 

Monte Carlo optimization search algorithm can be used to 

adapt the parameters in two coupled systems such that the two 

systems are synchronized.  Simulation results have been 

presented to show the effectiveness of the approach.  We have 

also studied the possibility to reconstruct a chaotic system 

based on the concept of chaos synchronization. 
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