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 

Abstract— Stacking fault energy (SFE) is an important 

parameter to be considered in the design of austenitic stainless 

steels (SS) due to its influence on magnetic susceptibility, atomic 

order changes and intergranular corrosion resistance. An 

extensive review of specialized literature was examined in order 

to understand the different methods that have been developed 

for the calculation of SFE. Characterization by transmission 

electron microscopy (TEM), linear expressions from data 

processing and first-principles quantum mechanics 

approximations are some techniques that have been used for this 

objective. In the present work a feed forward backpropagation 

artificial neural network (ANN) was developed to predict the 

SFE within given specific ranges of chemical compositions of 

austenitic SS. The experimental data were extracted and 

analyzed from a research work reported by Yonezawa et al [1], 

for three different heat treatment conditions. The model predicts 

SFE values with a correlation coefficient of 0.99, which reduce 

the error when is compared with other works in the literature.  

 

Index Terms— Neural network, Stacking fault energy, 

Austenitic stainless steel. 

 

I. INTRODUCTION 

  The SFE is an important physical parameter for the 

design and characterization of properties in austenitic SS. 

Hardness, intergranular corrosion resistance and magnetic 

susceptibility are some properties that are affected in 

austenitic SS [2]-[5]. Usually SFE has been related only to 

the chemical composition; however the heat treatment and 

manufacturing process of the materials are also important 

issues. These processes may induce large deformations, 

causing atomic rearrangement; which generates new phases, 

modifying magnetic susceptibility and intergranular 

corrosion [2]-[10]. In the last 60 years, several works have 

been carried out with different techniques to determinate the 

SFE, among them are characterization by transmission 

electron microscopy (TEM) [1], [11]-[17]; X-ray diffraction 

(XRD) [18-21]; neutron diffraction [16], [22]. In the other 

hand, it has been developed expressions by linear 

multivariables analysis of experimental data [1], [12], [14], 

[23]-[26], and also computational thermodynamics and 

quantum mechanics first-principles simulations [1], [17], 

[27]-[31]. Recently, Arpan Das [32] developed a model of a 

Bayesian neural network for the calculation of SFE. The 

investigation demonstrated that the predictions were 

reasonable in the context of metallurgical principles and it  

 
Román Alfonso, Universidad Autónoma del Estado de Morelos/ Centro 

de Investigación en Ingeniería y Ciencias Aplicadas, Cuernavaca, Morelos. 

Campillo Bernardo, Universidad Nacional Autónoma de México/ 

Facultad de Química, Ciudad de México. 

Martínez Horacio, Universidad Nacional Autónoma de México/ 

Instituto de Ciencias Físicas, Cuernavaca, Morelos 

Flores Osvaldo, Universidad Nacional Autónoma de México/ Instituto 

de Ciencias Físicas, Cuernavaca, Morelos.  

 

also compared with other issued works. Yonezawa et al. [1] 

elaborated several austenitic SS, considering three heat 

treatments and its manufacture process. They calculated the 

SFE by TEM characterization of the three heat treatments, 

which were: solution heat treatment-water cooling 

(SHTWC), solution heat treatment-furnace cooling 

(SHTFC), and aging (AGG). The experimental SFE values 

obtained were compared with the theoretical ones. The 

evaluation was performed by first-principles approach based 

on the density functional theory (DFT) [1], and proposed a 

highly efficient multivariable linear model. In the present 

work we developed a feed forward back propagation ANN 

for the prediction and comparison of SFE as a function of the 

chemical composition-dependence of Yonezawa´s work. The 

ANN was specifically designed and constrained for 33 Mo 

content austenitic SS alloys, considering only the SFE data 

reported for the three heat treatments [1]. Also the results 

were compared with other authors [1], [14], [24]-[26]. 

 

II. METHOD 

     Artificial neural networks (ANNs) have been widely 

applied in different fields of science and technology due to 

their efficiency in representing non-linear processes and its 

accuracy predictions. Many types of ANN´s models have 

been proposed and evaluated in different applications, such 

as the prediction of mechanical properties, corrosive 

resistance, particle sizes, and even applied in Large Hadron 

Collider (LHC) [32]-[38]. In this work the proposed ANN 

consist of one hidden layer and 12 neurons. They were 

selected by manual iterative method until a minimum error 

was achieved (0.01%). The minimum squared error (MSE) is 

the training error of the model, defined as: 

 

     (1) 

    Where N is the training number, Si and Yi are outputs of the 

ith output neuron, wherBe Si and Yi are the output of the 

experimental data and the approximated value, respectively 

[35]. To obtain a faster convergence, the gradient descent 

method was used and the Levenberg-Marquardt algorithm 

was selected for this purpose [39]-[41]. Figure 1 shows the 

architecture of the ANN. The input layer corresponds to the 

33 chemical compositions of the alloys in wt%. A hidden 

layer composed of 12 neurons is used and finally the output 

layer corresponds to 99 SFE calculations for the three 

different heat treatments (SHTWC, SHTFC and AGG). The 

activation function (f(x)) used in all the neurons is shown in 

Figure 2, which it is used and proposed in cases with soft 

signal variations [42]. The mathematical expression and the 

input values (x) are shown in equations (2) and (3) 

respectively. The data was normalized from 0 to 1. 
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Fig. 1. ANN´s architecture.  

 

Fig. 2. Hyperbolic tangent activation function. 

 

    (2) 

 

Where: 

 

      (3) 

and Xi are input values, Wi are weights and  are the biases. 

III. RESULTS AND DISCUSSION 

    The selected data from Yonezawa's research that 

corresponds to the measurements performed by TEM and 

their corresponding SFE calculations for three types of heat 

treatments were used. In general, there is a lack of clear 

information in the literature reviewed regarding the 

thermomechanical process and experimental 

characterization. In order to avoid inconsistencies due to the 

later statement; the only data considered were the 99 

contributions of Yonezawa´s work. We consider that the 

prediction range obtained by the values calculated [1] are 

sufficient for an optimal performance of our model. In order 

to create the ANN, the selected data were stochastically 

divided as follows: 63, 12 and 12 for training, validation and 

testing respectively. To complete the ANN development, the 

12 last data were simulated for the final validation. The 

weights and biases corresponding to the proposed ANN are 

additional material to the present paper, ensuring its possible 

re-creation of the model for use in predicting SFE. The 

performance obtained has a correlation coefficient of 0.99. 

The acquired prediction accuracy allows us to perform SFE 

calculations for three types of heat treatments within the 

given chemical composition ranges, which are shown in 

Table 1. 

Table 1: Chemical composition ranges of the ANN. 

Chemical composition 

(wt %) 
Maximum Minimum 

Carbon 0.075 0.0006 

Nitrogen 0.107 0.001 

Silicon 1.82 0.01 

Manganese 3.95 0.01 

Phosphorus 0.03 0.004 

Sulfur 0.0024 0.0002 

Nickel 19.85 10.8 

Chromium 24.11 13.09 

Molybdenum 2.7 0.04 

A.  Predicted and characterized Values of SFE for 

SHTWC, SHTFC and AGG heat treatments. 

    The effect of heat treatment on the design of austenitic SS 

is an important factor in the process of these alloys. 

Although, it is necessary to bring about a proposal to predict 

SFE based on the heat treatment and its chemical 

composition. We selected the ANN model in order to 

simulate SFE values. Figures 3a, 3b and 3c depict the 

comparison of both predicted and characterized values for 

the three heat treatment conditions. The calculated linear 

regression coefficient between the data is R
2
=0.99, validating 

high efficiency for the prediction of SFE by the present 

proposed ANN. Figure 3d shows the whole comparison 

between all the values among the heat treatments. 
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Fig. 3. (a-d) Comparison between the values both 

characterized and predicted of SFE for the three heat 

treatments. 

Employing the same selected characterized chemical 

composition data base from Yonezawa´s work [1] as 

mentioned previously, SFE values were evaluated. The later 

was performed using the models reported by [1], [14], 

[24]-[26] and the proposed ANN model from this work.  It is 

important to point out that these calculations correspond only 

for the austenitic SS in the water cooling condition 

(SHTWC). In figure 4a it is shown the predicted SFE values 

for all the compared models. To observe the trend of the 

values, a scale adjustment was done as shown in figure 4b. It 

can be observed that many of the data are even out of scale 

due to the difference in magnitude presented in the SFE 

calculations. The argument is that the models considered are 

usually designed only based on chemical composition and the 

influence of each element that has been analyzed and 

compiled in several previous works [1], [32]. 

 

 

Fig. 4. (a) Comparison between the values of SFE 

characterized and predicted for the SHTWC condition. (b) 

Adjusted figure from 4a. 

    The heat treatment and plastic deformation generally 

modify the crystal lattice because dislocation mechanism 

related to the precipitation of chromium carbide, increasing 

the SFE [2]-[10]. Hence the models just developed as 

function of the chemical composition are not able to make an 

efficiency prediction.  

B. The effect of heat treatment and chemical elements 

contents on SFE values. 

Using the ANN, the effect of each alloying element on 

austenitic stainless steels was studied. The minimum 

prediction value of the ANN was taken for each element up to 

the maximum value, increasing only one element (leaving the 

other elements constant), thus obtaining its impact on the SFE 

for the three heat treatments. 

Effect of Carbon on SFE 

Figure 5a shows the behavior of the SFE as a function of 

the increase in carbon content. For SHTWC the SFE 

decreases at low concentrations and increases at high carbon 

concentrations. On the other hand in SHTFC and AGG it is 

observed that at low concentrations the SFE decreases but on 

the contrary it remains more stable with higher 

concentrations of carbon. Petrov and Yakubtsov [43] 
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obtained similar results with theoretical calculations, 

obtained the decrease of SFE with low carbon contents and 

high with its increase. 

Effect of Nitrogen on SFE 

The effect of nitrogen on the SFE for the three heat 

treatments is shown in Figure 5b. The ANN predicts a 

descending behavior of SFE in all three cases, depending on 

the increase in nitrogen content. These results have been 

obtained by several authors experimentally. The main 

problem is that for this type of steels, the nitrogen content is 

limited, which does not allow analyzing higher 

concentrations. However, other researchers have found 

contrary results for the effect of nitrogen on SFE [32]. 

Effect of Silicon on SFE 

According to Schramm and Reed [23] the increase in 

silicon content decreases the SFE. It also retains the 

transformation sequence (FCC to HCP) during cooling and 

deformation. This behavior is shown in Figure 5c. The ANN 

predicted the same behavior reported previously [1], [23], 

[32]. 

Effect of Manganese on SFE 

The increase in Mn content generates increases in SFE. It 

is observed in figure 5d for the three heat treatments that its 

impact is moderately high. In several investigations, the same 

behavior has been reported with respect to this alloy element 

[1], [19], [23], [32]. 

Effect of Phosphorus and Sulfur on SFE 

Generally in steels, S and P are added to improve their 

machinability (contents greater than 0.1%). Since corrosion 

resistance decreases, in austenitic stainless steels it is 

convenient to keep the contents as low as possible. Figures 5e 

and 5f show the effect of both elements on the SFE. 

Measuring its effect is complicated, so there is a lack of 

information in the literature which can show results of the 

expected effect on SFE. Therefore, the behaviors observed in 

the aforementioned figures are generated by the prediction of 

the ANN, which in order to demonstrate its performance 

validation is needed additional experimental 

characterization. 

Effect of Nickel on SFE 

Figure 6a shows the effect of Ni on the SFE. There is a 

large increase in SFE with respect to the increase in Ni 

content. The increase is due to the fact that the Ni influences 

the cross slip dislocation, generating more defects in the 

crystal lattice [44]. In the SHTWC and AGG treatments 

similar behaviors are presented except for the defects 

generated by the AGG (increase in energy). However, the 

SHTFC shows drastic energy increases based on the content 

of Nickel. The reason can be attributed to the excess content 

in Ni and the lack of other alloying elements. The 

dislocations are greater, as a result of the slow cooling they 

get enough time to generate. This does not occur in the other 

two treatments, due to water cooling [32]. 

Effect of Chromium on SFE 

Figure 6b shows the impact of Cr on SFE. It has been 

reported that Cr does not significantly affect the SFE [1], 

[32], [45], [46]. Therefore, in high chromium contents but 

low carbon contents, not much defects (precipitation) are 

expected, hence the energy will not depend on the formation 

of these chromium carbides. The difference found in the three 

heat treatments can be explained by the phase relaxation 

time. Thus the SHTFC contains less energy for its prolonged 

cooling time, while the SHTWC conserves the residual 

stresses that can be formed by water cooling. The AGG 

presents less energy by the treatment at 650°C for two hours; 

this could dissipate a small amount of residual stress present, 

obtaining a small decrease in SFE. 

Effect of Molybdenum on SFE 

The Mo in austenitic stainless steels is added to improve 

the corrosion resistance of the material. The main 

characteristic of the addition of the Mo that has been found is 

the reduction of mobility of dislocations [32], [47]. The SFE 

is increased as a function of the increase of the Mo content. 

Figure 6c shows this behavior for the three thermal 

treatments. And as mentioned, the increase in energy between 

the treatments will depend on the type of element being 

studied and its effect generated by the heat treatment. 
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Fig. 5. Effect of alloying elements and heat treatments on the 

SFE. (a) Carbon. b) Nitrogen. c) Silicon. d) Manganese. e) 

Phosphorus. f) Sulfur. 

 

  

Fig. 6. Effect of alloying elements and heat treatments on the 

SFE. (a) Nickel. b) Chromium. c) Molybdenum. 

    Figures 7a, 7b and 7c show the behavior of all the elements 

that were previously explained. It is observed that for the 

SHTFC the effect of the elements is less shocking, this could 

be generated due to the stability of the austenitic phase, since, 

when cooling slowly there are no residual stresses, obtaining 

an atomic order with more time to reach its stability. On the 

other hand the increase in its energy can be generated by 

cross slip dislocation, generating more defects in the crystal 

lattice that could be created during slow cooling in the 

furnace. Regarding SHTWC and AGG are similar behaviors, 

but the main difference is the generation of precipitates in the 

AGG, evident in grain boundaries [1]. These generate more 

energy because they are defects present in the crystal lattice. 

All the effects of the alloy elements on the SFE were similar 

to those reported by several authors [1], [19], [23], [32], [43], 

[44]-[47]. 
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Fig. 7. Effect of all alloying elements and heat treatments on 

SFE. a) SHTWC. b) SHTFC. c) AGG. 

IV. DISCUSSION 

The proposed model can provide a support for the design 

of austenitic SS, in some cases has special applications. Such 

is the case of corrosion behavior that is influenced by the SFE 

values. When Heat treatment and plastic deformation process 

are involved the SFE values are directly affected. Therefore it 

is necessary to build models considering the processes 

details. On the other hand, the sample characterization and 

preparation techniques must be considered to control the 

dispersion among the difference in SFE calculated. It has not 

been reported a specific influence of this process parameters 

in the simulation models developed [12], [24]-[26]. Thus, we 

propose the design of ANN model based on chemical 

composition, heat treatment and the TEM as a 

characterization technique, the latter due to its accuracy in 

obtaining the dislocation mechanism for the austenitic SS. 

Based on the ANN model proposed it may be established for 

a fully understand of the effect of the process involved in the 

austenitic SS. Also it can be considered as an effective 

general method for the calculation of SFE values, but it is 

required to carry out further investigations with a specific 

control of the parameters aforementioned. Currently, 

artificial intelligence programming does not turn out to be a 

task with the complication as years before, there are software 

such as MATLAB that contain interfaces to develop these 

methods, there are also open codes such as Google's 

TensorFlow, Microsoft's ONNX and ACUMOS of the Linux 

foundation projects that allow achieving the same purpose 

[48]-[50]. The prediction of SFE by ANN model is a feasible 

technique for its use in future research and applications for 

the aforementioned. 

 

V. CONCLUSIONS 

A feed forward backpropagation ANN was developed to 

predict the stacking fault energy in austenitic SS. The 

database used was compiled from Yonezawa's work. The 

efficiency obtained in the prediction of the SFE for austenitic 

SS for three types of heat treatments was R
2
=0.99. In 

addition, the proposed ANN was compared with other 

models, including Yonezawa’s research. The present model 

shows an improvement in the prediction capability. It was 

observed that the effect of the alloy processes involved affect 

the SFE values. In order to obtain an effective predictive 

model it is necessary to build an specific database with 

selected chemical composition range under specific heat 

treatment conditions, sample preparation, plastic 

deformation percentage and characterization technique.  
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