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 

Abstract— This paper describes an approach to predict the 

citrus water requirements using a Multi Layer Feed Forward 

Neural Network MLFFNN and the Levenberg-Marquardt 

Algorithm (LMA).  Literature relates that the LMA is faster 

than the SONN and FFBP-NN algorithms. So the aim of this 

paper is focused on which best data base conception and the 

most performant MLFFNN architecture using LMA to predict 

water requierement for citrus plants in natural grow conditions. 

The drip irrigated citrus orchards are grown at the Technical 

Centre of Citrus (CTA) of Nabeul, at Northeast of Tunisia 

(36.5ºN, 10.2ºE), where trees are cultivated under standard 

conditions (disease-free, well-fertilized and not short of water). 

The daily climatic data (minimum and maximum air 

temperatures and relative humidity, wind speed, precipitation 

and solar radiation) recorded at the site of the experiment were 

used as inputs to the MLFFNN. Two secondary databases (DB) 

were used, both taken from the CTA's original database, to test 

the network, which has, for the case study, a single output: the 

amount of irrigation water needed by the citrus groves.  

Several architectures of the MLFFNN have been tested. The 

selected network, named A1-MLFFNN is constituted by two 

hidden layers, each comprising 5 neurons. With the LMA, the 

implementation of the A1-MLFFNN provides rapid and 

accurate results. The LMA showed high performance expressed 

in terms of the convergence speed and the reliability of the 

MLFFNN and particularly when using the DB2 (original 

database private of the unavailable water days) which is the 

most robust, giving the lowest RMSE and the highest coefficient 

of correlation (r = 0.799), and thus, allowing a better estimation 

of the amounts of irrigation water. 

 

Index Terms— MLFFNN, water requirement, citrus trees, 

model. 

 

I. INTRODUCTION 

Estimating water requirements of the perennial crops has 

always been a major priority for researchers, because it has a 

significant role in determining the crop yields and in 

optimizing the water consumption at field level. Basically, the 

crop water requirement is defined as the amount of water 

required by plants to compensate the evapotranspiration loss 

from the cropped field. As it is depend on both, the crop  
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characteristics and the climatic data, which are site-specific, a 

panel of experts developed a simplified way to deal with 

evapotranspiration dependence on climate by relating it to a 

standard reference evapotranspiration (ET0) by the crop 

coefficient: Kc, which is expressed as the ratio of ETc to ET0, 

or ETc = Kc ET0 [2]. Smith et al. (1996) defined ET0 as ‘the 

rate of ET from an hypothetical crop with an assumed crop 

height of 12 cm, a fixed canopy resistance of 70 sm-1 and an 

albedo of 0.23, closely resembling the ET from an extensive 

surface of the green grass of uniform height, actively growing, 

completely shading the ground and not short of water’. To 

determine ET0, large number of formulas [8] has been used 

during the 50 past years (1942-2005). Early methods [8] were 

based on temperature, relative humidity and solar radiation. 

The Penman original method (1963) is based on combination 

theory, involving simultaneous measurements of radiation, air 

temperature, air humidity and wind speed. All calculation 

procedures are described in Rana and Katerji (2000) and 

Habaieb and Masmoudi-Charfi (2003) and recently 

summarized in Sammis et al. (2011), including the 

FAO-Penman-Monteith (PM) formula [2], which became the 

American Society of Civil Engineers (ASCE) Standardized 

Reference ET equation and the current recommended one to 

compute the evapotranspiration of well watered crops. It 

overcomes the shortcomings of the previous methods and 

provides consistent values of ET0 over a wide range of 

climatic conditions [3]. However, although this formula is 

largely used to compute ET0 for irrigation management and 

yield prediction, it can generate errors and uncertainties in 

data measurements and/or in the simplifications made during 

the different steps of ET0 computation, which is a non-linear 

phenomenon, derived by several interacting climatic data and 

not practical to measure directly. With regard to these 

limitations and others, recent studies suggest the use of the 

Artificial Neural Networks (ANNs) to predict accurately and 

rapidly ET0. Kumar et al. (2002) developed a Multi Layer 

Feed Forward Neural Network (MLFFNN) to estimate the 

daily ET0 using six climatic parameters as inputs and 

compared the results with those computed directly by the 

FAO-56 PM method and with those measured by the 

lysimeter. Zanetti et al. (2007) developed an MLFFNN for the 

ET0 estimation by using the maximum and the minimum air 

temperatures as inputs and compared the generated 

performance with that obtained by the empirical 

temperature-based equations. Rahimikhoob (2010) 

developed temperature-based ANN models and compared his 

results with those obtained by the application of the 

Christiansen-Hargreaves and the FAO-56 PM equations. 

However, the use of the MLFFNN may present some 

limitations such as the long training time to provide a solution 
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and the non guarantee of the convergence of the obtained 

results. To overcome these limitations, Adamala et al. (2014) 

developed a Second Order Neural Network (SONN) to 

estimate ET0 for different locations in India, providing more 

accurate results. They have focused their work on the use of a 

higher-order Neural Network in order to model ET0. 

The main objective of this study is to provide an automatic 

prediction of the citrus water requirements grown on sandy or 

sand-clay soils in the Northeast of Tunisia by using the 

MLFFNN. The originality of this work is the use of the 

Levenberg-Marquardt algorithm for the adaptation of the 

syntactic weights of the MLFFNN, which proven its 

performance in similar studies. Through this work we would 

like to test and verify its performance under Tunisian 

conditions. The remaining of this paper is organized as 

follows: In the section 2, we present the methods and 

materials used; the section 3 presents the results obtained; the 

section 4 presents the discussions on these results; the section 

5 presents the result validation, finally, the conclusion of this 

work is presented in the section 6.   

II. MATERIALS AND METHODS 

A. Study Area 

The study was carried out during the 2015 and 2016 

campaigns on a citrus orchard located at the city of 

Gromabalia - Nabeul, Northeast of Tunisia (Long. 10.73°N, 

Lat. 36.45°E, E: 0 m) in collaboration with the Technical 

Centre of Citrus (CTA), which is a governmental centre 

specialized in the promotion and development of the citrus 

industry. The region is characterized by a typical 

Mediterranean climate with five to six rainless months, an 

average annual precipitation of 460 mm, falling mostly from 

November to March and a Thornwhite aridity index of 0.29 

[6]. The experimented citrus orchard was planted in 1998 at 

4x5 m
2
 spacing. Trees are growing under standard conditions 

(disease-free, well-fertilized) and drip irrigated during the dry 

months (May-September, northern hemisphere) by using ten 

emitters by tree with a nominal discharge of 2.3 L h
-1 

emitter
-1

. 

Figure 1 shows the locations of the CTA and the weather 

station of Grombalia-Nabeul.  

 
 

Fig.1.  Locations of the Technical Centre of Citrus (site of 

experiment) and the weather station of Grombalia-Nabeul, 

Northeast of Tunisia. 

 

B. Climatic Data And Processing  

Table 1 presents the average climatic data observed during 

the period of the study. 

Table 1: Study area specifications and mean climatic data for 

the 2015-2016 period. 

 Tmin Tmax RHmin RHmax 

Station 

CTA 

[C] [°C] [%] [%] 

12.5 22.1 46 85 

 

 Ws Sra P 

Station 

CTA 

[m s
-1

] [W m
-2

] [mm] 

0.9 132.4 29.8 

 

To compute the crop evapotranspiration, two sets of hourly 

meteorological data (2015 and 2016) were used. The datasets 

of temperature (T), relative humidity (RH) (Figure 2), wind 

speed (Ws) (Figure 3), solar radiation (Sra) and precipitation 

(P), were obtained from the Centre Weather Station (CWS) 

and the flux tour of the selected field.  

The database obtained from the CTA was subject to an 

outlier review using both, the automated and the manual 

procedures in order to remove the extreme values. The 

missing values were reconstituted by using the dataset of the 

flux tour and that recorded at the field’s weather station. Then, 

the dataset was converted from hourly metrological records to 

daily metrological values. For air temperature and relative 

humidity, we have considered the daily maximum and 

minimum values. For precipitation we used the INM database 

to reconstitute the missing observations because only the 

weather station is equipped with a rain gauge. The final result 

is a new database (DB1) composed of 9 columns of daily 

variables: Date, Tmin [°C] and Tmax, [°C] (Figure 4), RHmin 

[%] and RHmax [%] (Figure 5), Ws [m s-1] (Figure 6), Sra 

[W m-2] (Figure 7), P [mm] (Figure 8) and the actual 

irrigation amount IWr [L/tree/day] (Figure 9). All 

computations were made by using the software tool R. 

The irrigation program (daily irrigation amounts applied to 

the citrus orchard of the CTA during the campaigns 2015 and 

2016) was determined by the technical staff of the CTA, 

which used the FAO-56 Penman-Monteith method for ET0 

computation. However, as water was scare during the last 

years, the government imposed severe restrictions, allowing 

the use of, only, a part of the available resources. 

Consequently, the amount of irrigation water supplied to the 

citrus trees (IWr) doesn’t meet, systematically, the optimal 

crop water needs. These amounts are used for the ‘learning’ 

step of the MLFFNN. 

 
Fig.2. Hourly relative humidity (RH, %) recorded during the 

2015-2016 period (Pre-processing) at the Centre Weather 

Station (CWS) and the flux tour of the selected field. 
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Fig.3. Hourly wind speed (WS, m s

-1
) recorded during the 

2015-2016 period (Pre-processing) at the Centre Weather 

Station (CWS) and the flux tour of the selected field. 

0 

 
Fig.4. Daily Tmax and Tmin (°C) recorded in 2015 

(Post-processing). 

 
Fig.5. Daily HRmax and HRmin (%) recorded in 2015 

(Post-processing). 

 

 
Fig.6. Daily Ws (m s

-1
) recorded in 2015 (Post-processing). 

 

 
Fig.7. Daily Sra (W m

-2
) recorded in 2015 (Post-processing). 

 

 

 
Fig.8. Daily P (mm) amounts recorded in 2015 

(Post-processing). 

 

 
Fig.9. Daily irrigation water (IWr, L/tree/day) applied during 

the year 2015. 

 

C. Multi-Layer Feed Forward Neural Networks 

(MLFFNN) 

The Artificial Neural Networks (ANNs) is defined as a 

collection of highly connected elementary processors called 

neurons. Typically, neurons are organized in layers: input, 

hidden and output. These neurons are interconnected, i.e., 

each layer employs several neurons connected to the neurons 

of the other layers with different weights. The number of 

neurons in the hidden layer and the corresponding parameters 

are generally determined after assuming convergence of 

RMSE of the trial step. The signals flows into the input layer 

pass through the hidden layers and arrive at the output layer. 

During the training process, these weights can be adapted by 

using the Levenberg Marquardt algorithm LMA in order to 

generate the desired output, which is in the case of this study, 

the citrus water requirements. 

For modelling the physical systems, the Multi-Layer 

Feed-Forward Neural Network (MLFFNN) is usually used. In 
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this network, each layer is fully connected to the preceding 

one. Figure 10 shows a typical MLFFNN containing two 

hidden layers, each with 5 neurons, using a sigmoid activation 

function. The output layer has a single neuron using a linear 

activation function. 

The training of the network starts with random initialization 

of the weights and proceeds by iterant LMA in purpose to find 

the weights that optimize the RMSE, which is the chosen 

performance function for this study. The LMA ensures the 

adaptation of the learning rate (µ). In fact, µ is decreased after 

each successful step (reduction in RMSE) and it is increased 

only when a tentative step necessitate an increase of the 

RMSE. In this way, the RMSE will always be reduced at each 

iteration of the algorithm. 

 

 
Fig.10. Architecture of the Feed Forward Neural Network [5 

5 1] using the following activation function {logsig, logsig, 

purelin}. 

 

D. Development of the MLFFNN  

D.1 Choice of the Optimal MLFFNN Architecture 

The ANNs have many architectural forms and the choice of 

one of these architectures depends on the nature of the task to 

be performed. Several architectures are tested with the 

database (DB1) to establish the design of the MLFFNN model 

dedicated to predict the irrigation water amounts of the citrus 

orchard, considering the 2/3 of the examples for the ‘learning’ 

step and the rest of the examples for the ‘testing’ step. The 

choice of these examples follows a certain order to give 

importance to the order of the seasons in the year. We 

assigned every two successive days to the ‘training’ set and 

the third day was attributed to the ‘testing’ set (DB1). It’s 

essential to execute a normalization procedure before 

presenting the input data to the network. The input vector 

consists of seven climatic parameters Tmin , Tmax, , RHmin  , 

RHmax , Ws , Sra , P and the desired output consists of one 

node, which is, in this case, the citrus water requirements. 

The architecture A1 of the MLFFNN has two hidden 

layers, each with 5 neurons, using a sigmoid activation 

function and only one output layer with one neuron, using a 

linear activation function. The A1-MLFFNN is modeled by 

the combination [5 5 1] with the following activation function 

{logsig, logsig, purelin} (Figure 10). The architecture A2 of 

the MLFFNN has one hidden layer with 10 neurons using a 

sigmoidal activation function and an output layer with one 

neuron, only, using a linear activation function. The 

A2-MLFFNN is modelled by the combination [10 1] with the 

following activation function {logsig, purelin}. To develop 

this task, the code was written by using Matlab 7.12 

programming language. 

Both architectures (A1 and A2) provided low RMSE, with 

however some adjustment of the network’s variables, which 

was made by increasing the number of iterations of the 

algorithm, adapting the synaptic weights and the learning rate 

(µ). 

 

D.2 Robustness of the designed MLFFN Network 

The database used (DB1) for the learning and the testing 

steps of both the A1 and the A2 networks does not take into 

account the periods of water shortage. Indeed, the data file 

received from the CTA contains the records relative to the 

available water during the irrigation period and of course the 

days when water was missing. For example in March 11, 

2016, the irrigation process was interrupted due to a 

breakdown of the irrigation system. To overcome this 

problem, a new database (DB2) was created for the training 

MLFFNN by eliminating all these particular periods 

(breakdowns, water shortage, pump malfunction...) and in 

purpose to test the neural network, we used the whole 

database (DB1). 

III. SIMULATION RESULTS 

The A1-MLFFNN results are shown in Table 3, which are 

provided by using the DB1. Values showed that, for an 

adapted µ equal to 0.001 using LMA (with an initialised µ 

equal to 0.01 (µi)), the RMSE of the ‘test’ step decreases after 

3000 epochs (Figure 11.a, Table 3). With the same 

A1-MLFFNN, results showed that for µi =0.002, the RMSE 

of the ‘testing’ step is higher after 2000 epochs (Figure 11b, 

Table 3). For µi = 0.01, the A1-MLFFNN provided better 

results compared to the A2 MLFFNN structure for the ‘test’ 

step, although we used the same DB1 in the ‘learning’ step 

(Figure 11.a and Figure 11.c, Table 3).  

 

 
 

Fig.11. RMSE convergence curves for the ‘learning’ and the 

‘testing’ steps using the DB1. 

 (a): A1-MLFFNN, μ = 0.01 ; (b): A1-MLFFNN, μ = 0.002 ; 

(c) A2-MLFFNN, μ = 0.001. 
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The network A1-MLFFNN has been trained until 10000 

epochs, using µi=0.01. In this case, some samples in the 

‘testing’ step showed wrong values of the irrigation water 

needs. Thus, the best choice is the network A1-MLFFNN 

trained with 1000 epochs; it provides the best estimation of 

the crop water needs (Figures 12 and 13). Values of RMSE 

obtained during the training and the test steps with 

A1-MLFFNN are 0.656 and 1.558, respectively. The 

A1-MLFFNN using DB1 for learning and testing is named 

A1-MLFFNN/DB1. Figure 12 shows the A1-MLFFNN/DB1 

outputs in the ‘training’ step while Figure 13 presents the 

A1-MLFFNN/DB1 outputs of the ‘testing’ step.  

 
Fig.12. The A1-MLFFNN/DB1outputs in the training step. 

µa=0.0001, 1000 epochs. 

 

 
Fig.13. The A1-MLFFNN/DB1 outputs in the testing step. 

IV. DISCUSSION 

A. Robustness and Performance of the Optimal MLFFNN 

Considering the A1MLFFNN architecture when using the 

DB2 during the step of ‘learning’ with µi=0.01 and after 1000 

epochs, we have obtained µa=1e-06. Here, it is interesting to 

note that the new neural network (A1-MLFFNN/DB2) has 

learned the period of the interruption of the irrigation process 

and it’s able to meet rapid changes of the irrigation amounts 

(IWr). The RMSE obtained with A1-MLFFNN/DB2 during 

the training and the testing processes (using DB1 in test step) 

are 0.534 and 0.517, respectively. The RMSE of the testing 

step with A1-MLFFNN/DB2 is lower compared to that 

obtained with A1-MLFFNN/DB1 (Table 3). This proves the 

robustness of the network A1-MLFFNN/DB2. Figure 14 

shows the A1-MLFFNN/DB2 outputs in the training step with 

DB2, while Figure 15 presents the A1-MLFFNN/DB2 

outputs in the testing step with DB1, with µi=0.01 and 1000 

epochs. 

 
Fig.14. The A1-MLFFNN/DB2 outputs in the training step 

with DB2. 

 

In order to analyse the obtained results during the ‘testing’ 

step of the A1-MLFFNN/DB2 we have culled several 

samples (Figure 15 and Table 2): 

♦ Mai 23, 2015 (day number in graph is 143): Breakdown 

of the electro-pumps. Although the intervention of CTA’s 

personnel was 0 L/tree, the conceived A1-MLFFNN/DB2 

estimates an amount of irrigation water of 46.94 L/tree as 

output. In view of the desired output during the day before and 

after the break down was 66.96 L/tree and 53.67 L/tree 

respectively.  

Taking into account the absence of rain during these three 

successive days, we can consider that the estimated results of 

the A1-MLFFNN/DB2 are accurate.  

♦ During the days: 7/25/2015, 8/2/2015 and 8/13/2015 

(respectively days number in graph are: 206, 214 and 225), 

the CTA’s personnel were obliged to compensate for the loss 

by increasing the amount of the irrigation water, but in the 

other hand the conceived A1-MLFFNN/DB2 generated lower 

values.  

 

 
Fig.15. The A1-MLFFNN/DB2 outputs in the testing step 

with DB1. 

 

Table.2. Outputs of the A1-MLFFNN/DB2 in the ‘testing’ 

step compared to the corresponding target outputs for some 

particular cases when no precipitation occurs. 
Day number Out-test 

 (L/tree/day) 

Target-test 

 (L/tree/day) 

Precipitation  

(mm) 

142 66.96 68.05 0.2 

143 46.94 0 0.2 

144 53.67 68.05 0.2 

206 49.33 60.44 0 

214 0 45.82 0.8 

225 50.48 64.07 0 
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B. Performances and Confrontations 

The results show that the A1-MLFFNN/DB2 is the most 

efficient in terms of RMSE (Table 3), although we have to 

pre-treat the database by eliminating the problematic days, 

which makes the procedure non-automatic.  

Table.3. Performance of the different MLFFNN architectures 

used for the training step. 
MLFFNN 

architectures 

A1/DB2  

[5 5 1] 

µi=0.01 

A1/DB1 

[5 5 1] 

µi=0.01 

Epochs 1.0  

E03 

1.0 

E03 

2.0  

E03 

3.0 

E03 

Learning 

Time(s) 

18 16 33 47 

µa 1.00 

E-06 

1.00 

E-04 

1.00 

E-03 

1.00 

E-03 

RMSE-train 0.53 0.66 0.61 0.69 

RMSE-test 0.52 1.56 1.79 1.47 

 
MLFFNN 

architectures 

A1/DB1 

[5 5 1] 

µi =0.002 

A2/DB1 

[10 1] 

µi =0.001 

Epochs 1.0 

E03 

2.0 

E03 

3.0 

E03 

1.0 

E03 

2.0 

E03 

3.0 

E03 

Learning 

Time(s) 

16 32 47 16 33 48 

µa 2.00 

E-04 

2.00 

E-04 

2.00 

E-05 

1.00 

E-05 

1.00 

E-07 

1.00 

E-07 

RMSE-train 0.623 0.6 0.72 0.59 0.58 0.66 

RMSE-test 0.69 1.71 12.6 1.51 1.88 1.99 

 

The networks A1-MLFFNN/DB1 and A1-MLFFNN/DB2 

are the fastest in the ‘learning’ step (Table 3) and have a lower 

level of complexity (number of neurons) than other networks 

cited in the literature such as the Second Order Neural 

Network (SONN) and the Back Propagation Neural Network 

(BPNN) [1]. It is slightly less efficient than the last ones 

because the authors Adamala et al. (2014) use 5 successive 

years of data and in our case the database is limited to two 

consecutive years, only. The designed networks are less 

complex in their implementation than those used by Adamala 

et al. (2014), because:  

1) These authors used 10 distributed neurons with equal 

numbers for the two layers, unlike other methods which use a 

greater number of neurons for a single layer; this makes the 

calculation procedure longer.  

2) The learning rate used in our study is adapted 

automatically by the LMA, which is not the case for the 

SONN and BPNN methods; the value of the rate is changed 

manually following the RMSE test results. 

V. VALIDATION 

Correlations established between the amounts of water 

(IWr) supplied to the citrus trees by the CTA and those 

estimated by the two neuronal architectures A1-MLFFNN / 

DB1 and A1-MLFFNN / DB2 showed high correlative 

coefficients of 0.596 and 0.799, respectively (Figures 16 and 

17). These results confirm the previous one (lower RMSE 

error with the A1-MLFFNN/DB2 model) and show the 

superiority of the A1-MLFFNN/DB2 model comparatively to 

the A1-MLFFNN/DB1 one. 
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Fig. 16. Correlation between the amount of water supplied to 

the citrus trees and those estimated by the A1-MLFFNN/DB1. 

Amounts are given in L/day/tree. 
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Fig.17. Correlation between the amount of water supplied to 

the citrus trees and those estimated by the A1-MLFFNN/DB2. 

Amounts are given in L/day/tree. 

VI. CONCLUSION 

In this paper, the Multi Layer Feed Forward Neural 

Network MLFFNN using the Levenberg-Marquardt 

algorithm have shown it’s performances to well predict the 

citrus water requirements.  It is established that the smart 

architecture (5-5-1) of the MLFFNN is capable to generate 

acceptable results compared to the models cited in the 

literature: Second Order neural network (SONN) and Back 

Propagation Neural Network (BPNN). These latest uses a 

greater number of neurons, making the spend time in the 

learning step longer. Validation of the neuronal architectures 

A1-MLFFNN / DB1 and A1-MLFFNN / DB2 showed 

distinctly the superiority of the A1-MLFFNN / DB2 

architecture in estimating the amounts of water needed by the 

olive trees. Indeed, with the A1-MLFFNN / DB2 we have 

obtained higher correlative coefficients than that obtained 

with the A1-MLFFNN / DB1. 

In the future, we plan to use a larger database for the 

training and the validation of the MLFFNN which will lead us 

to remove some idealizations used in this paper and extend 

this application to other orchards grown under more restricted 

conditions (diseases, water shortage...). 
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