An improved Recycling Nested Miller Compensation Amplifier with High Gain-Bandwidth

Po-Yu Kuo Member IEEE, Gang-Jhih Fan

Abstract—During the past decades, multi-stage amplifiers have been studied and designed to achieve better performance. According to contemporary circuit topologies, the traditional multi-stage amplifier can only achieve low gain-bandwidth (<5 MHz) and a low slew rate (<10 V/μs). In this paper, an improved recycling nested Miller compensation (IRNMC) amplifier is presented. By applying recycling folded cascode topology as the first stage amplifier, the proposed IRNMC amplifier improved the performance of gain-bandwidth and slew rate over that of the current multi-stage amplifiers. The proposed IRNMC amplifier is implemented in the TSMC 0.18-μm CMOS process, and is simulated using a 1.8 V power supply with a load capacitor of 100 pF. Simulation results show that the proposed IRNMC amplifier achieved a 137 dB DC gain, a 15 MHz gain-bandwidth, a 62° phase margin and a 14.6 V/μs slew rate.

Index Terms—Multi-stage amplifiers, recycling folded cascode topology, improved recycling nested Miller compensation (IRNMC), gain-bandwidth, slew rate.

I. INTRODUCTION

Modern analogy amplifier circuit design and applications have indicated an increased demand on low-voltage, high-gain, high bandwidth capabilities. To achieve these goals, multi-stage amplifiers have been studied and designed to achieve better performance [1-9]. According to the proposed circuit topologies, the multi-stage amplifiers can only achieve a low gain-bandwidth (GBW) (<5 MHz) and low slew rate (<10 V/μs). Moreover, with the reduced size of devices, in particular the deep submicron technology process, low supply voltage requires the further reduction of the voltage gain and output swing. Thus, it is necessary to add more stages in the multi-stage amplifier design to solve this issue.

Recently, a recycling folded cascode (RFC) amplifier has been proposed to enhance the performance of traditional folded cascode (FC) amplifiers [10, 11]. The RFC amplifier can achieve a high gain and reasonably large signal swing with low voltage CMOS processes. Hence, the RFC amplifier has been employed in many applications [12].

In this paper, an improved recycling nested Miller compensation (IRNMC) amplifier has been proposed to improve the performance of the GBW and slew rate over that of current multi-stage amplifiers. The IRNMC amplifier modified the RFC amplifier by applying the nested Miller compensation (NMC) technique. To reduce complexity, the proposed amplifier applied a simple NMC technique to improve its general performance. Moreover, adding to the number of gain stages will increase the circuit’s complexity. Thus, to maintain a good compromise of voltage gain and stability, frequency compensation techniques for multi-stage amplifier designs are adequate for practical purposes.

II. PROPOSED IRNMC AMPLIFIER

A conventional nested Miller compensation (NMC) amplifier is shown in Fig. 1. The first stage is implemented using an FC amplifier with transistors M0-M8. The transistors M3 and M4 conduct the most current; thus, they have the largest transconductance. However, the function of these transistors is limited to providing a folding node for the small signal current generated by the input drivers M1 and M2 [10]. Transistors M9-M12 realize the second gain stage. The third gain stage is the output stage with the capacitor load, and is formed by M13 and M14.

To improve on the inefficiency of conventional NMC amplifiers, an improved recycling nested Miller compensation (IRNMC) amplifier is presented in Fig. 2. In the proposed amplifier, the first stage is realized based on an RFC amplifier. The input drivers M1 and M2 (Fig. 1), are split in half to produce transistors M1, M2, M3 and M4 (Fig. 2). Next, M3 and M4 (Fig. 1) are split to form the current mirrors M7:M8 and M10:M9 with a ratio of K:1 (Fig. 2). The
A high gain-bandwidth product (GBW) of an op-amp is achieved by the Miller compensation technique. An improved Recycling Nested Miller Compensation Amplifier with High Gain-Bandwidth (IRNMC) was presented.

TheIRNMC amplifier is designed and simulated in a TSMC 0.18μm 1P6M CMOS process, and simulated with a 1.8 V power supply, 100 pF capacitor load and compensation capacitors ($C_{m1}=5pF$, $C_{m2}=0.12pF$). In order to investigate the feasibility of the proposed IRNMC amplifier, the simulated frequency response of the proposed amplifier is compared to that of a conventional NMC amplifier. Fig. 4 shows the open loop AC response of the IRNMC amplifier. The dc gains of the NMC and IRNMC amplifiers were 66 dB and 137 dB, respectively. The NMC amplifier has a GBW of 4.19 MHz with a phase margin of 57°. The GBW of the IRNMC amplifier is 15.05 MHz, with a phase margin of 62°.

The GBW and slew rate of the proposed amplifier increased due to the enhancement of g_{m1}. The simulation results show that the proposed amplifier significantly improved the performance of the GBW and slew rate over that of the NMC amplifier.

For slew rate measurements, the NMC and IRNMC amplifiers are simulated when both amplifiers are loaded with a 100pF//1kΩ load. The simulated transient responses to the 500mVpp step input are shown in Fig. 5. As seen, the IRNMC amplifier clearly improved the slew rate of the NMC amplifier. The average slew rates of the IRNMC and NMC were 14.6 V/μs and 7.16 V/μs, respectively. The performance comparisons of IRNMC amplifiers and reported multi-stage amplifiers are summarized in Table I. It can be observed that the IRNMC achieved a 259% improvement in GBW compared to the NMC. For the average slew rate, the IRNMC achieved a 104% improvement compared to the NMC.

Moreover, the reported multi-stage amplifiers achieved a low slew rate (< 5 V/μs) and low GBW (< 5 MHz). However,
the proposed IRNMC amplifier can achieve a 14.6 V/μs slew rate and 15 MHz GBW. Obviously, the IRNMC amplifier significantly improved the performance of the average slew rate and GBW over that of other reported multi-stage amplifiers with compensation topologies.

IV. CONCLUSION

An improved recycling nested Miller compensation (IRNMC) amplifier was proposed herein to improve the general performance of reported multistage amplifiers via a compensation technique. By modifying the RFC amplifier using the nested Miller compensation (NMC) technique, the proposed amplifier significantly enhanced the performance of the DC gain, gain-bandwidth and slew rate over the NMC amplifier. The simulation results show that the gain-bandwidth and slew rate were enhanced by 259% and 104% over that of the NMC amplifier.

ACKNOWLEDGMENT

The authors are grateful for the support received from the Ministry of Science and Technology, Taiwan, under Grant: MOST 106-2221-E-224-052 and the technical support from the National Chip Implementation Center (CIC), Taiwan, R.O.C.

REFERENCES

