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Abstract— The one dimensional unipolar orthogonal codes 

are employed as signature sequences in spread spectrum 

modulation schemes like incoherent optical CDMA system. The 

cardinality or upper bound of code set, containing one 

dimensional unipolar orthogonal codes of code length ‘n’ and 

code weight ‘w’ and correlation constraint λ , is given by 

Johnson bounds. Conventionally these codes are represented by 

weighted position representation (WPR) or position of bit ‘1’s in 

the code. The auto-correlation and cross-correlation constraints 

of the unipolar orthogonal codes are calculated using the binary 

sequences equivalent to these codes in WPR. Two other 

representations of one dimensional unipolar orthogonal codes 

are proposed as well as two methods for calculation of 

correlation constraints of these unipolar orthogonal codes. This 

paper proposes an algorithm to search a family of multiple sets 

of minimum correlated one dimensional unipolar (optical) 

orthogonal codes (1-DUOC) or optical orthogonal codes (OOC) 

with fixed as well as variable code parameters. The cardinality 

of each set is equal to upper bound. The codes within a set can be 

searched for general values of code length ‘n’, code weight ‘w’, 

auto-correlation constraint less than or equal to λ_a , and 

cross-correlation constraint less than or equal to λ_c , such that 

n>>w>>(λ_a,λ_c). Each set forms a maximal clique of the codes 

within given range of correlation properties (λ_a,λ_c).  

 

Index Terms— Difference of positions representation (DoPR), 

fixed weighted positions representation (FWPR), one 

dimensional unipolar orthogonal codes (1-D UOC) 

 

I. INTRODUCTION 

  Every day better ideas are being implemented to fulfill the 

basic desire of people to have better communication medium. 

Now-a-days, the common mediums for communication are 

Internet, telephone (mobile phone), television and AM/FM 

radio. These mediums of communication are either wired or 

wireless i.e. the transmitters and the receivers are connected 

with each other through cable (wires) or through a wireless 

medium. The wireless medium may be atmosphere or 

tropospheric layers which reflects the radio waves with 

limited bandwidth (Mega-Hertz range) and power. The other 

mediums providing wireless communication are based on 

human made satellites which can provide faster 

communication limited up to few Mbps through stations or 

towers on earth. 

Similarly, in Optical CDMA multiple sets of minimum 

correlated one-dimensional uni-polar (optical) orthogonal  
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codes with fixed or variable code parameters are required to 

increase the channel capacity and inherent security. The code 

parameters for one dimensional unipolar orthogonal codes are 

code length ‘n’, code weight ‘w’, auto-correlation constraint 

 and cross-correlation constraint  such that 

n>>w>( ). Various one-dimensional optical orthogonal 

code design schemes for constant weight have been proposed 

in literature. These schemes can design single set of optical 

orthogonal codes corresponding to specific values of code 

parameters (n,w, ). The sets of 1-DUOC with variable 

or multi-weight parameter have larger cardinality than that of 

the set with constant code weight parameter. The set of codes 

with low code weights provide poor BER performance, then 

the set of codes with large code-weights are desirable. The set 

of codes having subsets with different code weight parameters 

can provide multiple QoS (quality of service) as per the need. 

The sets of 1-DUOC or OOC with variable or multi 

code-length parameter can be used for multi-rate systems 

employing OOC. The 1-DUOC with multi-length and 

multi-weight provide the multi-class set of 1-DUOC with 

larger cardinality and inherent security for use in multi-rate 

systems. The general values or unspecified parameters of the 

codes increase the inherent security of the system by 

decreasing the probability of generating same set of signature 

sequences (pattern) or orthogonal codes, unless code 

parameters are known. It can be said that the sets of 1-DUOC 

or OOC with general and variable code parameters are needed 

for systems incorporating OOC for better performance. 

We have designed the single family of minimum correlated 

multiple sets for fixed code parameters through proposed 

maximal clique search method. Secondly two or more such 

families can be found for various length and weight 

parameters. Finally one set from each family is searched such 

that it has minimum correlation with all others. These finally 

searched minimum correlated maximal clique sets of 

orthogonal codes with multi-length and multi-weight 

parameters even with equal or unequal values of 

auto-correlation constraint and cross-correlation constraint 

can be put in other family. The auto-correlation constraint for 

the set of codes designed here is never greater than two. The 

cross-correlation constraint for set of codes is always equal to 

one but this may exceeds to two for multiple sets of codes with 

fixed or variable code parameters representing tradeoff 

between larger cardinality and better BER performances. 

Each set has maximum number of codes which is given by 

upper bound of the set such that the codes within every set 

form a maximal clique. In graph theory, a clique is a 

sub-graph such that each pair of nodes in the sub-graph is 

connected or adjacent. We can represent all codes as nodes 

and a link exist between two nodes if cross-correlation is less 

than or equal to  . A sub-set of codes where each possible 

pair of codes has a link between them is the clique set. 
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II. LITERATURE REVIEW 

The advantages of CDMA (code division multiple access) 

system over other multiple access systems are well known to 

researchers in the field of communication. These advantages 

forced them to think to access the optical fiber bandwidth 

using code division multiplexing in optical domain. The 

Optical CDMA has come across a lot of hurdles and 

challenges from its inception. The wireless CDMA system 

requires bipolar orthogonal codes for spread spectrum 

modulation with binary information of multiple users. But the 

optical fiber could process only unipolar codes while 

transmitting the multiplexed information. The design of 

optical transmitter and optical receiver for CDMA system 

were big challenges along-with the design of uni-polar 

orthogonal codes. The researchers accepted the challenges to 

take advantages of CDMA system to access huge bandwidth 

of optical fibers. 

In 1986, Fan, Prucnal and Santoro[1] gave a basic idea to 

spread spectrum fiber-optic local area network using optical 

processing.  

In 1988, Gagliardi, Khansefid with Taylor proposed a new 

design of binary sequence sets for pulse coded system [2]. In 

1988, Foschini and Vannucci gave the concept of using 

spread spectrum for making a high capacity fiber optic local 

area network [3].  

In 1989, Salehi. J presented fundamental principles for code 

division multiple access techniques in optical fiber networks 

[4]. In 1989, Kiasaleh. K proposed the spread spectrum 

optical on-off keying communication system [5]. At the end 

of this year Kwong, Prucnal, and Perrier gave detailed 

comparison of synchronous versus asynchronous CDMA for 

fiber-optic LANs using optical signal processing [6].  

In 1996, Gagliardi and Mendez gave the performance 

improvement of optical communications with hybrid WDM 

and CDMA [11]. In 2002, Sergeant and Stok, described the 

role of optical CDMA in access network telling merits and 

demerits of optical CDMA system which makes new 

challenges in the field of optical CDMA systems [12]. 

It was a big milestone in this field, with the realities of optical 

CDMA systems about their physical realization. The work for 

design of one dimensional unipolar (optical) orthogonal 

codes started with the advent of spread spectrum 

multiplexing. Many researchers had proposed multiple design 

schemes of unipolar orthogonal codes and their sets. One of 

these code-sets was proposed by Robinson in 1967 in his 

research paper [7]. At the same time in 1967 Gold, R. 

proposed optimal binary sequences for spread spectrum 

multiplexing [8]. In 1971, Reed proposed a new scheme to 

generate kth order near-orthogonal codes [9], while in 1979 

Shedd and Sarwate proposed another scheme for design of 

binary orthogonal sequences [10]. The orthogonal binary 

sequences design was in its early stage and there was a need to 

convert these binary codes into optical signal.  

In 1994, Kwong, Zhang and Yang proposed 2n prime 

sequence codes and its optical CDMA coding architecture 

[13].  

In 1995, Argon and Ahmad [14] proposed optimal optical 

orthogonal code design using difference sets and projective 

geometry.  

Choudhary, Chatterjee, and John had proposed new code 

sequences for fiber optic CDMA systems [15]. These new 

code sequences were based on table of prime, quadratic 

residues and number theory. Bitan and Etzion had proposed 

constructions of optimal constant weight cyclically 

permutable codes based on difference families [16].  

In 1996, Zhang had proposed strict optical orthogonal codes 

for purely asynchronous code division multiple access 

applications [17]. 

 In 2001, Choudhary, Chatterjee, & John proposed one 

dimensional optical orthogonal codes using hadamard 

matices [18].  

In 2011, R.C.S. Chauhan and R. Asthana propsed an unique 

representation named be difference of positions 

representation (DoPR) and simple calculation of 

auto-correlation and cross-correlation constraint of one 

dimensional unipolar orthogonal codes based on DoPR [21]. 

In 1995, G. C. Yang and T. E. Fuja proposed one dimensional 

optical orthogonal codes with unequal auto- and 

cross-correlation constraints [19]. In 1996, G. C. Yang, also 

proposed variable weight optical orthogonal codes for 

CDMA networks with multiple performance requirements 

[20].  

Some of the researchers are doing experimental 

demonstration of the optical cdma systems. In 1991, 

Macdonald and Vethanayagam demonstrated a novel optical 

code division multiple access system at 800 mega-chips per 

second [22]. In 1994, Gagliardi and Mendez gave synthesis of 

high speed and bandwidth efficient optical code division 

multiple access and its demonstration at 1Gb/s throughput 

[23]. In 2002, Sotobayashi, Chujo and Kityama had 

demonstrated 1.6-b/s/Hz, 6.4-Tb/s QPSK-OCDM/WDM (4 

OCDM X 40 WDM X 40 Gb/s) transmission using optical 

hard thresholding [23]. 

III. ILLUSTRATION OF ONE DIMENSIONAL 

UNIPOLAR ORTHOGONAL CODES 

A. Weighted Positions Representation (WPR) 

The one dimensional unipolar orthogonal code word X of 

code length n and code weight w includes w number of bit 1’s 

and n-w number of bit 0’s. There are n positions of either bit 1 

or bit 0 in code X which are termed as 0th position to (n-1)
th

 

position out of which there are w weighted positions and n-w 

non weighted positions. The code X can be represented by 

showing weighted positions of code X. There can be such n 

representations for each of n circular shifted versions of code 

X. This type of representation of an unipolar orthogonal 

codeword may be called as weighted positions representation 

(WPR) or bit 1’s positions representation. For example 

suppose an one dimensional unipolar orthogonal code X of 

code length n=19, code weight w=4 such that X= 

1000100001000000100,  which can be represented as WPR 

(0,4,9,16). Each of n circular shifted versions of code X 

represent to same unipolar orthogonal code X. All other 

weighted positions representations of code X can be given as 

(3,8,15,18), (2,7,14,17), (1,6,13,16), (0,5,12,15), 

(4,11,14,18), (3,10,13,17), (2,9,12,16), (1,8,11,15), 

(0,7,10,14), (6,9,13,18), (5,8,12,17), (4,7,11,16), (3,6,10,15), 

(2,5,9,14), (1,4,8,13), (0,3,7,12), (2,6,11,18), (1,5,10,17). 

Anyone of these can be used to represent the one dimensional 

unipolar orthogonal code X supposed as above in WPR [24]. 

B. Fixed Weighted Position Representation (FWPR) 

The n representations of an unipolar code in WPR can be 

reduced by making a compulsory position of bit 1 at position 
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zero. This will reduce the number of weighted positions 

representations of the unipolar orthogonal code to w from n 

representations. This reduced weighted positions 

representation may be called as fixed weighted positions 

representation (FWPR). The code X in FWPR can be given as 

 which means that the positions 

 are ‘1’ (weighted) while 

other ‘n-w’ positions are ‘0’ (nonweighted). The shifting of X 

in binary form by , units in 

left circularly convert the code X into other FWPRs like 
 

 

 
…….. 

 

 
 

The code X in its matrix FWPR XF contains all FWPR 

 of code X in the rows of matrix 

FWPR, F X. These rows of F X always have atleast one 

common element weighted at zero position so that the first 

column of code F X is always zero. For the same example as 

for WPR, X=1000100001000000100, the fixed weighted 

position representations of code are given as WPR with 0th 

weighted positions like (0,4,9,16), (0,5,12,15), (0,7,10,14), 

and (0,3,7,12). 

The matrix FWPR for this code X is given as 

 
Such FWPR representation of an unipolar orthogonal code is 

not unique as it has w representations of an orthogonal code. 

To make the representation of an orthogonal code as unique, a 

new representation is proposed which shows the difference of 

positions of consecutive bit 1’s in the unipolar code or binary 

sequence [25]. 

C. Difference of Position Representation (DoPR) 

 

An orthogonal codeword represented in WPR or FWPR has w 

elements in its representations. These representations do not 

uniquely represent an one dimensional unipolar orthogonal 

code. If this code is represented by difference of positions of 

consecutive bit 1’s in the code or difference of consecutive 

weighted positions in WPR or FWPR, all n circular shifted 

versions of the unipolar code can be represented uniquely. In 

this difference of positions representation (DoPR) the first 

DoP element is equal to difference of first two element of any 

WPR or FWPR of the unipolar code, the second DoP element 

is equal to difference of third and second element of same 

WPR or FWPR and so on upto (w-1)th DoP element which is 

equal to difference of last two elements of same WPR or 

FWPR. The last DoP element is given by difference of first 

and last element of WPR or FWPR of the code in modulo n 

addition/subtraction, here n is length and w is weight of 1-D 

UOC. For a given unipolar code X in FWPR, 

 of code length n and weight w, 

it can be represented as   in 

DoPR. Here 

 

 
….. 

 

 
 

In this difference of positions representation, all w circular 

shifted versions of DoPR, represent to same unipolar code. 

From these all circular shifted versions of DoPR, one DoPR 

of the code can be standardized by fixing last DoP as the 

greatest element. If last DoP element is the greatest but equal 

to other DoP elements in the DoPR, then more than one 

DoPRs are found with greatest last DoP element. Out of these 

selected DoPRs, one DoPR can be standardized by searching 

an DoPR with minimum value of first DoP element. If 

suppose more than one DoPRs are found with the maximum 

last DoP element and minimum first DoP element then out of 

these selected DoPRs one DoPR can be standardized by 

searching an DoPR with minimum second DoP element. If 

suppose DoPR could not be standardized, it can be proceeded 

upto minimum (w-1)
th

  DoP element to get a standard DoPR 

of the same unipolar code. The sum of all DoP elements of a 

DOPR for the unipolar code is always equal to code length n. 

The code X in DoPR    can be 

converted in FWPR 

 

 
As 

 
….. 

 
 

The matrix FWPR of code   

can be given as following: 

 

 
 

 

The matrix elements are calculated using modulo n addition. 

All of these can be best understood by the example supposed 

earlier, the unipolar code X = FWPR (0, 4, 9, 16) with code 

length n=19 and weight w=4. The DoPR of this code can be 

determined for all other FWPRs of same code as following: 

FWPR(0,4,9,16)=DoPR(4-0, 9-4, 16-9, 

0-16+19)=DOPR(4,5,7,3) 

FWPR(0,5,12,15)=DoPR(5,7,3,4) 

FWPR(0,7,10,14)=DoPR(7,5,4,5) 

FWPR(0,3,7,12)=DoPR(3,4,5,7) 

 

All w=4 circular shifted version of this DoPR (4,5,7,3), are 

given as DoPR (5,7,3,4), DoPR(7,3,4,5) and DoPR(3,4,5,7) 

which represent to same unipolar ortohognal code. One of this 

DoPR can be standardized by keeping last DoP element as the 

greatest as found in DoPR (3,4,5,7). The matrix FWPR for 

standard DoPR (3,4,5,7) can be given as: 
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There is another DoPR can be proposed named extended 

difference of positions representation (EDoPR), containing 

all difference of positions of bit ‘1’s which are at consecutive 

or non-consecutive positions. These positions can be arranged 

in matrix w×(w−1) form. 

In general for any value of weight w such that w< n , the code 

X in DoPR   can be converted 

in EDoPR as follows: 

 

 

 
 

For DOPR (3, 4, 5, 7), the EDOPR can be given as 

 

 
 

It can be concluded from above matrix FWPR and EDOPR, 

for code X= , that both are 

almost same except the extra first column in FWPR with all 

zero elements. Hence both are easily convertible. 

Either of these two makes calculation of auto and cross 

correlation constraints of unipolar orthogonal codes very 

easier [26]. 

IV. CALCULATION OF CORRELATION 

CONSTRAINTS 

In following the conventional method for calculation of 

auto-correlation and cross-correlation constraints is 

described. As well as one proposed method for calculation of 

correlation constraint using fixed weighted position 

representation (FWPR) and another using extended 

difference of positions representation (EDoPR) are described. 

These proposed methods are found with reduced 

computational complexity. 

A. Conventional Method 

A unipolar orthogonal code is represented by n binary 

sequences for every circular shifting of the code in WPRs. 

The correlation of a uni-polar orthogonal code with its 

un-shifted binary sequence is equal to weight ‘w’ of the code. 

Suppose code X with code length ‘n’ and weight ‘w’ be 

suppose code X with code length ‘n’ and weight ‘w’ be X = 

(x0 x1 x2 . . . xn-1), xt = 0 or 1 for 0 <=t <=n-1  

The correlation of X with its un-shifted sequence is given by 

 
which, will be always equal to w. It is also autocorrelation 

peak which appear at the detector for the detection of binary 

data equal to ‘1’ represented by this codeword. 

The code X with m unit cyclic left shifting is represented as 

Xm = (xm xm+1 xm+2 . . . xm-1), xm+t is given under 

modulo n addition for 0 <=t <=n-1, 

The correlation of X with Xm (the cyclically shifted versions) 

is given by 

 
The auto-correlation constraint  is defined and given as 

 

 Maximum of      or 

 

 
 

For unipolar orthogonal binary sequences, 0    w - 1 

Suppose code Y with code length ‘n’ and weight ‘w’ be Y = 

(     .  .  .  ).            

 

  = 0 or 1 for 0  t  n-1 

 

The correlation of X with Y and its circularly unshifted & 

shifted binary sequences (Ym) is given as 

  =  0  

The cross-correlation constraint  is defined and given as 

= Maximum of ( )        or 

 

        

 

For uni-polar orthogonal binary sequences 

0    w – 1                           [25] 

 

B. A Method for Calculation of Correlation Constraints 

Using FWPR 

In the calculation of auto-correlation constraint of code X, the 

maximum common weighted positions are observed in all 

FWPRs of code X or in two rows of matrix FWPR . The 

code X in its matrix FWPR  contains all FWPR 

of code X in the rows of matrix 

FWPR . 

 
 

These rows of   always have at least one common element 

weighted at zero position so that the first column of code  

is always zero. The auto-correlation constraint of code X can 

be calculated by comparing each row with all other rows of 

code X in matrix FWPR. The first row is compared with all 

other rows of  , second row is compared with third and so 

on upto (w-1)
th

 row, fourth row is compared with fifth and so 

on upto (w-1)
th

 row, similarly upto (w-2)
th

 row which is 

compared with (w-1)
th

 row to get maximum common 

weighted positions. This maximum common position in two 

rows is called as auto-correlation constraint . It can be 

given as follows: 

 

Here  
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for 0 i < w-1, i +1 j  w-1, 0 s, t  w-1 

The auto-correlation constraint  of code X, can be calculated 

as 

 
 

 

 

 
 

The computational complexity for the calculation of 

auto-correlation constraint of unipolar orthogonal code is of 

the order O( ) . 

Similarly for two codes X and Y of same code length ‘n’ and 

weight ‘w’, the cross-correlation constraint  can be 

calculated in FWPR, 

  

 

 
 

The cross-correlation of X with Y can be calculated by 

comparing each row of XF with all rows of  represented in 

matrix fixed weighted position representation (FWPR). 

Every row of an unipolar orthogonal code in matrix FWPR 

represent to same code in weighted position representation 

with at least one position weighted at zero position. Here all 

such row of code X are compared with all rows of code Y to 

get maximum common weighted positions in code X and Y, 

this maximum common position is cross-correlation 

constraint for pair of code X and code Y. The correlation 

function between i
th

 row of code and j
th

 row of code  can 

be given as follows: 

 

 

Here  

 

For, (i, j, s,t) . The cross-correlation constraint of code X 

and Y, can be calculated as- 

 

 

 

 
The computational complexity for the calculation of 

cross-correlation constraint for a pair of one dimensional 

unipolar orthogonal codes is of the order O( ). 

 

C. A Method for calculation of correlation constraint 

using EDOPR 

 

The code X in standard DoPR is  

with code length  

 

Its equivalent in EDoPR, is given as 

 
 

 

 
 

The auto-correlation constraint of code X can be calculated 

by comparing each row with all other rows of code X in 

extended difference of positions representation (EDoPR). 

The first row is compared with all other rows of X , second 

row is compared with third and so on upto (w-1)
th

 row, fourth 

row is compared with fifth and so on upto (w-1)
th

 row, 

similarly upto (w-2)
th

 row which is compared with (w-1)
th

 row 

to get maximum common weighted positions. This maximum 

common positions plus one is termed as auto-correlation 

constraint   because the first column with all zero elements 

in matrix FWPR of code X is not present in EDoPR of code X. 

The first column in matrix FWPR with all zero elements is 

always understood in EDOPR to justify for at least one more 

common element in comparison of each pair of rows of 

EDoPR of code X. It can be given as follows. The correlation 

function between i
th

 and j
th

 row of code  can be given as 

follows 

 

Here  

 

, for 0 i <w-1, i +1 j w-1, 0 s,t  w-2 

The auto-correlation constraint  of code X, can be 

calculated as 

 
 

 

 

 
 

The computational complexity for the calculation of 

auto-correlation constraint of unipolar orthogonal code is of 

the order O( ). 

Similarly for two codes X and Y of same code length ‘n’ and 

weight ‘w’, the cross-correlation constraint  can be 

calculated in EDoP. 
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The cross-correlation of X with Y can be calculated by 

comparing each row of  with all rows of   represented in 

extended difference of positions representation (EDoPR). 

Every row of an unipolar orthogonal code in matrix EDoPR 

represent to same code in fixed weighted position 

representation without the weighted zero position. Here all 

such row of code X are compared with all the rows of code Y 

in EDoPR, to get maximum common elements. This 

maximum common elements plus one is equivalent to 

cross-correlation constraint for pair of code X and code Y 

because the first column with all zero elements in matrix 

FWPR of code X and code Y is not present in EDoPR of code 

X and Y. 

The first column in matrix FWPR with all zero elements is 

always understood in EDOPR to justify for at least one more 

common element in comparison of each pair of rows of 

EDoPR of code X .The correlation function between i
th

 row of 

code  and j
th

 row of code  can be given as follows: 

 

 
Here 

 

 

The cross-correlation constraint  of code X and Y, can be 

calculated as 

 

 

 

 

 
 

The computational complexity for the calculation of 

cross-correlation constraint for a pair of one dimensional 

unipolar orthogonal code is of the order. The calculation of 

auto- correlation and cross correlation constraint for the set of 

one dimensional unipolar orthogonal code can be explained 

as following.  

Suppose the set of unipolar orthogonal codes contains two or 

more than two codes. The auto correlation constraint of every 

code of the set can be calculated by following conventional or 

proposed methods for the calculation of correlation 

constraints. The maximum of these calculated 

auto-correlation constraints of all the codes is called 

auto-correlation constraint for the set of codes. Similarly the 

cross-correlation constraint for every pair of codes from same 

set can be calculated by conventional or proposed methods 

for the calculation of correlation constraints. The maximum of 

these calculated cross-correlation constraints of all pair of 

codes from the same set is called cross-correlation constraint 

for the set of unipolar orthogonal codes O( ). 

V. MAXIMAL CLIQUE SETS OF 1-DUOC 

The maximal sets of 1-DUOC for fixed code parameters (n,w, 

 )  can be designed using anyone of the two proposed 

algorithms. 

A. Algorithm One to design the maximum sets of 1-DUOC: 

The algorithm one can generate all possible multiple sets of 

one dimensional unipolar orthogonal codes for given code 

length ‘n’, code weight ‘w’ and correlation constraints lying 

from 1 to w-1, such that w and n are co-prime (no common 

factors) and n . The codes are generated in difference of 

positions representation (DoPR). The steps of algorithm one 

as follows: 

 

Step-1: Input code length ‘n’, code weight ‘w’, 

auto-correlation constraint   and cross-correlation 

constraint  for the code sets to be generated. 

 

Step-2: Initialize w variables equal to one and  

. 

 

Step-3: Generate all the codes of set (n,w) in standardized 

DoPR in sequence starting from (1,1,...,1,n –w+1) to 

 with enumeration. 

 

 

 
The variables  in DoPR, represent the 

difference of weighted positions or position of bit 1
’s 

in serial 

and circular order in the code. 

All the codes generated with condition 

 will always be in standard DoP 

representation. While for the condition when  is equal to 

any one or more than one of  and greater 

than remaining DoP elements, the code has more than one 

representations as  out of their circular 

shifted versions. In this condition, that representation is 

chosen for which (i)  is minimum, and (ii) If minimum  is 

found in more than one DoP representations, then minimum 

 is searched among DoPs with minimum  . The DoP 

representation with minimum  and minimum  is 

considered as standard DoP representation. Similarly, search 

up to   to find standard DoP representation may be 

needed if  are same in more than two 

members of candidate codes. The upper bound of the set (n,w) 

of these generated unipolar orthogonal codes is equal to 

Johnson bound for the set of unipolar orthogonal codes with 

maximum correlation constraints These 

generated unipolar codes in DoPR are numbered serially from 

Code#1 to Code #N for identification of codes. N is maximum 

number of codes generated. 

 
Here represent integer value just less than a, and  

represent integer value just greater than a. 

 

Step 4: Calculation of auto-correlation constraints 

For the generated codes in DoPR in step 3, the 

auto-correlation constraint of each code can be calculated 
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through the use of proposed method for calculation of 

correlation constraints. 

Step 5: Calculation of cross-correlation constraints 

The cross-correlation constraint for each pair of unipolar 

orthogonal codes generated in step-3, is calculated through 

the use of proposed method. The cross-correlation for each 

pair containing code#1 with code of code number greater than 

1, secondly the code#2 with code of code number greater than 

2, up to code#(N-1) with code#N. 

 

Step 6: Formation of correlation matrix 

In step 3, the number of generated codes are N. A N *N matrix 

can be formed in such a way that 

it contains correlation of code# x with code# y, for 1  (x, 

y) N . 

When x = y , it represent maximum auto-correlation for non 

zero shift or auto-correlation constraint of code# x or code# y, 

which form diagonal elements of N *N correlation matrix. For 

x   y, cross correlation constraint of code# x with code# y is 

found as a non-diagonal element in row x and column y as 

well as non-diagonal position with row y and column x in 

correlation matrix. 

Step 7: Formation of sets of unipolar orthogonal codes for 

given values of  and  such that 1 , . The 

upper bound Z of the set of unipolar orthogonal codes with 

given values of auto-correlation and cross-correlation 

constraints can be calculated by Johnson bound A. 

 
 

Now, all those codes are selected for which diagonal entries 

are . All the elements of rows and columns, which are not 

selected, are removed from the correlation matrix, giving a 

reduced correlation matrix. Within these codes, only those 

sets of codes with upper bound Z, are selected which has 

cross-correlation constraints  by following method. 

i. From the reduced correlation matrix only those rows and 

columns are selected whose numbers of 

cross-correlation entries with are greater than 

the upper bound Z of the sets of codes to be 

generated. 

ii. In this reduced correlation matrix, number of rows or 

columns are equal to M. Out of these M codes, all 

possible combinations of sets of non repeated Z 

codes are formed mentioning their code numbers. 

These possible combinations of sets are equal to 

 

 
 

iii. Each such set of codes are checked for their maximum 

cross-correlation constraint through the use of 

cross-correlation entries from reduced correlation 

matrix. It will achieve final sets of codes as required. 

 

VI. COMPUTATIONAL COMPLEXITY 

The computational complexity of the proposed algorithm - 

one for the formation of one dimensional unipolar (optical) 

orthogonal codes is summarized here in the following steps: 

Step 1: Calculation for upper bound of the set of one 

dimensional unipolar (optical) orthogonal codes for code 

length n, code weight w with auto-correlation and 

cross-correlation constraint of the set equal to w-1. This upper 

bound is equal to Johnson bound A. The computational 

complexity of this step is   . 

Step 2: Formation of all one dimensional unipolar (optical) 

orthogonal codes of code length n, code weight w with 

auto-correlation and cross-correlation constraint less than or 

equal to w-1 in standard difference of positions representation 

(DoPR). The computational complexity of this step is 

 

Step 3: Conversion of every code formed in standard DoPR 

to extended DoP matrix representation. The computational 

complexity of this step is O(rw
2
 ) . 

Step 4: Calculation of auto-correlation constraint of each 

code formed at step 2 form its EDOP matrix representation as 

in step 3. These values of auto-correlation constraints are put 

at the position of diagonal elements in correlation matrix [r * 

r]. The computational complexity of this step is O(rw
3
 ). 

Step 5: Calculation of cross-correlation constraint of every 

pair of these codes in EDoP matrix representation and putting 

them in correlation matrix [r * r] at non diagonal positions. 

The computational complexity of this step . 

Step 6: Calculation for upper bound or Johnson bound of the 

set of one dimensional unipolar (optical) orthogonal codes for 

code length n, code weight w with correlation constraint  

which is maximum of given auto-correlation and 

cross-correlation constraint. The computational complexity 

of this step is O (n  ). 

Step 7: Formation of reduced correlation matrix whose 

diagonal elements are always less than or equal to given 

auto-correlation constraint  and non-diagonal elements are 

either less than or greater than or equal to cross-correlation 

constraint . The computational complexity of this step is O 

(r
2
). 

Step 8: Formation of all sets of 1-D U(O)OC with maximum 

cardinality as calculated in step VI, and checking each set for 

cross-correlation constraint less than or equal to given 

cross-correlation constraint value with help of reduced 

correlation matrix. The computational complexity of this step 

is O (r
3
 ), where 

 

The overall computational complexity of the proposed 

algorithm is of the higher order of O (r
3
) which is equivalent 

 which may be polynomial type for w<<n. 

 

A. Design of Sets of 1-DUOC (Algorithm - two) 

The algorithm two is an extended version of algorithm one. In 

algorithm one the formation of correlation matrix (NxN) is 

much complex for higher N so that N cannot take the values 

greater than 100. The formation of code sets from the given 

correlation matrix (NxN) is also much complex. It can be 

reduced by following algorithm two as given below: 

 

Step 1: same as algorithm one (input code parameters 

( )) 

Step 2: same as algorithm one (initializing parameters) 
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Step 3: same as algorithm one (generation of all the N codes 

in sequence in DoPR) 

Step 4: same as algorithm one (calculation of auto-correlation 

constraint of each of N codes generated at step 3) 

Step 5: Take one code C1 out of all N codes such that 

maximum non-zero shift auto-correlation of code C1 is less 

than or equal to auto-correlation constraint  of desired sets 

as input in step one. Calculate cross-correlation of pair of 

codes formed with other N-1 codes such that in each pair one 

code is C1. Out of N-1 pair of codes only N1 codes pairing 

with C1 are selected which have cross correlation less than or 

equal to cross correlation constraint . 

Step 6: Repeat step 5 for code C2 out of all N1 codes. Get N2 

codes pairing with C2 out of (N1-1) pair of codes. The step 6 is 

repeated till the Cz-1. Where Z is defined and given as 

maximum number of codes in the code set formed for given 

code parameters (n,w, ) such that ( ) have 

cross-correlation constraint less than or equal to . There are 

total Nz-1 code which have their cross-correlation value with 

code Cz-1 less than or equal to  . Each of these Nz-1 codes 

may be treated as code Cz so that there are Nz-1 set of codes 

may be formed as (C1,C2 ,...,Cz-1,Cz ) 

Step 7: The step 6 may be repeated for all possible other 

codes C1 to Cz-1 which are not employed in last steps to get 

different set of codes following correlation properties. 

 

COMPUTATIONAL COMPLEXITY 

The computational complexity of step 1 to step 7 is remain 

same as algorithm - one but the value of r is changed for given 

auto-correlation  and cross-correlation constraint  

 

 

The overall computational complexity of the proposed 

algorithm - two is of the higher order of O(r
3
) which is 

equivalent  which may be polynomial type for 

w<< n but less complex than algorithm - one. 

VII. CONCLUSION 

The proposed difference of positions representation of one 

dimensional unipolar orthogonal codes can be used as unique 

representation for these codes. The fixed weighted position 

representation is not unique but matrix FWPR of an 

unipolar orthogonal code can be used for calculation of 

correlation constraints with computational complexity with 

order of . Another method for calculation of correlation 

constraints using EDoPR for unipolar orthogonal codes is 

found with near about same computational complexity with 

the order  . 

In this paper the proposed clique search algorithm design the 

family of sets of codes with multi-length, multi-weight, 

auto-correlation constraint equal to one and cross-correlation 

constraint equal to one for within set while cross-correlation 

constraint equal to two among the sets with upper bound. The 

computational complexity of the proposed algorithm 

designing the multiple sets of codes with variable and general 

code parameters is polynomial type if clique search is 

polynomial.  
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