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 

Abstract— The Markov chain sampling is a powerful tool for 

the optimization of complicated objective functions. It is 

introduced in order to more efficiently search the domain of the 

objective function.  In many applications these functions are 

deterministic and randomness.  The maximum statistic converge 

to the maximum point of probability density which establishing 

links between the Markov chain sampling and optimization 

search.  This statistical computation algorithm demonstrates 

convergence property of maximum statistics in large samples 

and it is global search design to avoid on local optimal solution 

restrictions.  We have developed and implemented a Markov 

chain sampling to determine the best energy minimum for 

oligopeptides.  Our test molecule was Met-enkephalin, a 

pentapeptide that over the years has been used as a validation 

model for many global optimizers.  The test potential energy 

function was ECEPP/3.  The results indicate that the proposed 

optimization search is an efficient algorithm for conformational 

searches. 

 
Index Terms— Markov chain, protein structure prediction, 

protein folding, conformational space search 

I. INTRODUCTION 

  The computational identification of the low energy 

structures of a peptide from its sequence alone has been a 

problem of major interest for many years.  It is not an easy 

task even for small peptides, due to the multiple-minima 

problem and combinatorial explosion. A number of 

conformational search algorithms have been developed in the 

past for this purpose.  We have developed an algorithm that 

addresses this problem.  Peptides are short polymers made up 

of a few to a few tens of amino acids.  Many of these have 

meaningful roles in biochemistry and biophysics.  Some 

sequences of peptides have a clear tendency to form 

well-defined three-dimensional structures, that is, to fold.  

Peptides are also useful as model systems for much larger 

peptide chains known as proteins.  The naturally occurring 

three dimensional structure of a protein, its “tertiary 

structure,” is believed to be uniquely determined by its 

“primary structure,” the sequence of amino acids of which the 

protein is composed. Anfisen [1] in his “thermodynamic 

hypothesis” proposes that the native state of a protein is the 

structure that minimizes the free energy.  By definition, such a 

state would be at the global minimum of free energy relative 

to all other states accessible on that time scale.  Thus, the 

conformational search, or folding, can be posed as an 

optimization problem.   Conformational search of peptide 

molecules, to a first approximation, can be thought of as the 

problem of finding the 3D molecular structure that 

corresponds to the lowest local minimum of an appropriate 

mathematical function describing the potential energy of the 

system.  Computer simulations are often used to carry out this  
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task.  A major concern in computer simulations is to obtain a 

set of low-energy conformations with biological significance; 

that is, finding those conformations that are near the 

thermodynamic native state.  Folding a protein from only a 

knowledge of its amino acid sequence is a formidable task.  

Because it is computationally impossible to test all possible 

conformations to determine the global minimum, it is 

necessary to develop methods that can land upon a global 

minimum without testing all conformational possibilities.  

This is a challenging optimization (minimization) task. In 

many cases the detailed properties of the potential function to 

be minimized are not known.  Even if the function is 

differentiable, one can often encounter non-convex surfaces, 

and the local properties of the function can be different in the 

different search regions, i.e., the basins can have different size 

or depth, the smoothness can vary, etc.  Many different force 

fields for proteins have been designed as a summation of a set 

of potential energy contributions.  Among the most used ones 

are: ECEPP [2], MM2[3], ECEPP/2 [4],  CHARMM [5], 

DISCOVER [6], AMBER [7], GROMOS87 [8], MM3 [9], 

and ECEPP/3 [10].  Most of these have a large number of 

local minima.  In general, protein folding with any force field 

is a NP-hard problem [11] where the time needed to locate the 

lowest minimum grows exponentially when the number of 

variables grows linearly.  A major challenge in this type of 

global optimization problems is that there is no clear 

mathematical basis for efficiently reaching the global 

minimum, thus finding the latter in an accurate and speedy 

way is of general interest.  To reduce the size of the problem 

one takes advantage of the fact that under biological 

conditions some internal motions of protein molecules occur 

on a time scale much smaller than others.  Experimentally, the 

average values of covalent bond distances and covalent bond 

angles are fairly constant, and lead to the assumption that 

conformational changes observed in the dihedral angles could 

fully determine the overall shape of the protein molecule.  

Thus, if one specifies the position of all atoms in the protein 

molecule as a function of its internal coordinates, under the 

assumption of constant bond lengths and bond angles, the 

problem drastically reduces the number of its degrees of 

freedom.  Although the size of the problem can be reduced 

when the energy function is written in terms of torsional 

angles, it is known that in this form the energy function is no 

longer partially separable, meaning that it is no longer much 

less expensive to reevaluate the energy if only a few variables 

change than if they all change.  To overcome this effect, a 

number of workers have devised interesting stochastic and 

non-stochastic methods, which impose constrains and bias the 

search towards the region where the global minimum could be 

found.  Among stochastic methods employed to predict 

oligopeptide 3D structures are Monte Carlo with 

minimization (MCM) [12a, 12b], simulated annealing (SA) 

[13], threshold accepting (TA) [14], free energy Monte Carlo 
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with minimization (FMCM) [15], multi-canonical ensemble 

(ME)[16], conformational space annealing (CSA) [17], and 

genetic algorithms18 (GA) [18].  Among non-stochastic 

methods we find molecular dynamics with minimization 

(MDM) [19], dynamic programming (DP) [20], the diffusion 

equation method (DEM) [21a], the mean-field technique 

(MFT) [22], and a global optimization procedure known as 

_BB [23].  In this article we take an approach to minimize the 

ECEPP/3 [10] energy function based on tabu search (TS) 

[24], a stochastic optimizer developed to treat complex 

combinatorial optimization tasks.  Our test molecule is that of 

Met-enkephalin, a pentapeptide that has been used as a 

validation model for many global optimizers, and because its 

lowest energy conformation for the potential energy function 

ECEPP/3 is known [23].  We first present the problem we are 

dealing with in a mathematical fashion, then we discuss the 

general principle of the proposed sampling algorithm and 

explain how to use this algorithm for conformational search.  

Finally, we present our computational results. 

  

Protein Conformational Search Problem 

As indicated above, the conformation of a protein with a 

sequence of Nres amino acid residues in the peptide chain can 

be described by a set of dihedral angles i , i , i , where i 

= 1,…,Nres on the backbone, plus a set of dihedral angles j

i , 

i = 1,…, Nres,  j = 1,…, 
iJ  , where 

iJ  denotes the dihedral 

angles of the side group on the i-th residue. If one wishes to 

allow capping of the peptide, then one has to include two 

more sets of dihedral angles. One could be defined as N

k , k = 

1,…, K
N
 for those dihedral angles on the amino end group, 

and the other could be defined as C

k , k = 1,…,K
C
 for those 

dihedral angles on the carbonyl end group.  In this paper the 

complete ECEPP/3 [10] force field was used. This force field 

is built upon the assumptions that the bond lengths and angles 

are at their equilibrium values, and that the resulting function 

is in reality a conformational energy surface made of a 

summation over interactions of types 1–4 and higher. These 

interactions take into account electrostatic, nonbonded, 

hydrogen bond, and torsional energies, plus other empirical 

terms that take into account a loop closing potential in the 

case that the peptide has intramolecular disulfide bonds, and 

fixed conformational energies for the propyl and 

hydroxypropyl residues. A condensed description of the 

ECEPP/3 force field could be written as: 
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All constants are estimated by fitting of experimental data 

[10].  Given these definitions, the potential energy 

minimization problem can be summarized as follows: 

 

minimize ),,,,,( C

k

N

k

j

iiiiU   

subject to the particular constrains: 

resii Ni ,...,1,180,180  　  

resi Ni ,...,1,10)180(10  
i

res

j

i JjNi ,...,1,,...,1,180180  　  

CNC

k

N

k KkKk ,...,1,,...,1,180,180  　  

The most important points in the implementation of a bee 

swarm optimization to our particular application are: the 

search space X, the cost function f.  The cost function f (x) is 

the empirical energy function ECEPP/3, which is designed to 

work in angle space X, while keeping bond length and bond 

angle values constant, and where no solvent effects are 

included. 

 

II. MARKOV CHAIN MONTE CARLO 

 

Markov chain Monte Carlo methods are a class of 

sample-generating techniques by controlling how a random 

walk behaves.  It attempts to directly draw samples from some 

complex probability distribution based on constructing a 

Markov chain that has the desired distribution as its 

equilibrium distribution.  The state of the chain after a large 

number of steps is then used as a sample of the desired 

distribution.  The quality of the sample improves as a function 

of the number of steps.  Usually it is not hard to construct a 

Markov chain with the desired properties.  The more difficult 

problem is to determine how many steps are needed to 

converge to the stationary distribution within an acceptable 

error.  The Markov chain Monte Carlo has become a powerful 

tool for Bayesian statistical analysis, Monte Carlo 

simulations, and potentially optimization with high 

nonlinearity.  There are many ways to choose the transition 

probability, and different choices will result in different 

behaviour of Markov chain.  In essence, the characteristics of 

the transition kernel largely determine how the Markov chain 

of interest behaves, which also determines the efficiency and 

convergence of Markov chain Monte Carlo sampling.  There 

are several widely used sampling algorithms, such as 

Metropolis-Hasting Algorithm [25] and Gibbs Sampler [26]. 

 

A. Metropolis-Hastings Sampling Algorithm 

The basic idea of Markov chain Monte Carlo methods is to 

construct a Markov chain with the specified stationary 

distribution, namely )( , then run the chain with full length 

till the sample chain value close enough to its stationary 

distribution. Then take stationary chains as the samples of 

)( and make variety of statistical inference based on these 

samples. The most popular Markov chain Monte Carlo 

sampling method is Metropolis-Hastings algorithm, which 

means sampling starts from another easily known reversible 

Markov chain Q, and obtain the new Markov chain by 

comparing.  It generates a random walk using a proposal 

density and a method for rejecting proposed moves. 
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To draw samples from the target distribution, we let 

)()(  p , where   is a normalizing constant which 

is either difficult to estimate or not known.  We will see later 

that the normalizing factor   disappear in the expression of 

acceptance probability.  The Metropolis-Hastings algorithm 

essentially expresses an arbitrary transition probability from 

state   to   as the product of an arbitrary transition kernel 

),( q  and a probability ),(  .  That is, 

 ),(),()(),(  qPP   

Here q  is the proposal distribution function, while ),(   

can be considered as the acceptance rate from state   to   , 

and can be determined by 
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The essence of Metropolis-Hastings algorithm is to first 

propose a candidate * , then accept it with probability  .  

That is, *

1  t
 if u  where u is a random value drawn 

from an uniform distribution in [0, 1], otherwise 
tt  1
.  It 

is straightforward to verify that the reversibility condition is 

satisfied by the Metropolis-Hastings kernel 

)(),(),()(),(),(  qq  ,  

for all  , .  Consequently, the Markov chain will converge 

to a stationary distribution which is the target distribution 

)( . 

In a special case, when the transition kernel is symmetric is its 

arguments, or ),(),(  qq  , for all  ,  , then the 

acceptance rate ),(   become 
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And the Metropolis-Hastings algorithm reduces to the classic 

Metropolis algorithm.  In this case, the associated Markov 

chain is called as symmetric chain.  In a special case when 

1  is used, that is the acceptance probability is always 1, 

then the Metropolis-Hastings degenerates into the classic 

widely used Gibbs sampling algorithm.  However, Gibbs 

sampler becomes very inefficient for the distributions that are 

non-normally distributed or highly nonlinear. 

 

B. Random Walk and Levy Flight 

A random walk is a random process which consists of taking a 

series of consecutive random steps.  The sum of each 

consecutive step which is a random step drawn from a random 

distribution forms a random walk.  It means the next state will 

only depend on the current existing state and the transition 

from the existing state to the next state.  This is typically the 

main property of a Markov chain.  If the step size obeys the 

Gaussian distribution, the random walk becomes the 

Brownian motion.  In theory, as the number of steps increases, 

the central limit theorem implies that the random walk should 

approaches a Gaussian distribution.  If the step size obeys 

other distribution, we have to deal with more generalized 

random walk.  A special case is when the step size obeys the 

Levy distribution, such a random walk is called a Levy flight 

or Levy walk.  Levy flight is a random walk whose step length 

is drawn from the heavy-tailed Levy distribution often in 

terms of a simple power law formula.  It is worth to point out 

that a power law distribution is often link to some scale free 

characteristics, and Levy flights can thus show self-similarity 

and fractal behaviour in the fight patterns. 

III. MARKOV CHAIN SAMPLING FOR OPTIMIZATION SEARCH 

 

A simple random walk can be considered as a Markov chain.  

In a probability distribution, the largest density area is mostly 

tending to be sampled.  So the sampling density function 

should converge to the maximum point of maximum 

probability if the sample is sufficiently large.  Thus 

establishing links between the function maximum value and 

sampling extreme statistics.  We can use Markov chain Monte 

Carlo to simulate a sample of this distribution.  And the 

optimal will appear most frequently in the sample.    That is, 

the optimal state will have the greatest probability. 

Suppose that we are interested in exploring solutions x   that 

minimize an objective function R)( xf , where 

n

n Rxxx  ),...,( 1
.  That is, if we want to find the minimum 

of an objective function R)( xf at *xx  so that 

)()( ** xfxff  .  We can convert it to a target 

distribution for a Markov chain 
)()( xfex    

where 0  is a parameter which act as a normalized factor.  

  should be chosen so that the probability is close to 1 when 

*xx . At *xx  , )()( ** xx   .  This often requires 

that the formulation of )(xf  should be non-negative, which 

means that some objective functions can be shifted by a large 

constant 0C   if necessary.  Then, a Markov chain is 

constructed to sample )(x .  Typically, the solutions in the 

vicinity of the global minimum of )(xf  are most likely to be 

drawn in the sampling process.  Therefore, Markov chain 

Monte Carlo can also be used for optimization purposes.  To 

design a Markov chain with stationary distribution )(x , the 

maximum point in finite sampling from distribution )(x  

will be sufficiently close to the maximum point of )(xf  in 

the feasible region.  When the transition kernel is symmetric is 

its arguments, or ),(),( yxqxyq tt  , then the acceptance 

rate ),( yxt  become 
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The proposed Markov chain sampling for optimization search 

algorithm is:  

 

(1) Start with 0x , at  0t ,  0

*

0 xx   

(2) Propose a new solution y  

(3) Drawn u  from the uniform distribution )1,0(U   
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Repeat (2) to (6). If the iteration times are large enough, then 
*

tx  will convergence to the maximum point of the objective 

function )(xf  in distribution. We can see from the problem 

analysis above that the key points of Markov chain sampling 

method are designing of general probability density function 

)(x and uniform sampling from conditional constraint 

region. 

 

In order to solve an optimization problem, we can search the 

solution by performing a random walk starting from a good 

initial but random guess solution.  However, to be 

computationally efficient and effective in searching for new 

solutions, we can keep the best solutions found so far, and to 

increase the mobility of the random walk so as to explore the 

search space more effectively.  We can find a way to control 

the walk in such a way that it can move towards the optimal 

solutions more quickly, rather than wander away from the 

potential best solutions.  These are the challenges for the most 

metaheuristic algorithms.  The same issues are also important 

for Monte Carlo simulations and Markov chain sampling 

techniques.  An important link between Markov chain and 

optimization is that some heuristic or metaheuristic search 

algorithms such as simulated annealing use a trajectory-based 

approach.  They start with some initial random solution, and 

propose a new solution randomly.  Then the move is accepted 

or not, depending on some probability.  It is similar to a 

Markov chain.  In fact, the standard simulated annealing is a 

random walk.  Simulated annealing is a probabilistic method 

for finding global minimum of some cost function introduced 

by Kirkpatrick et al. [27].  It searches local minimum, and 

finally stays at the global minimum given enough time.  This 

sampling method was originally extended from Metropolis 

Algorithm [28] by implanting a temperature function T.  T is 

used to control the difficulty for the stochastic sampler to 

escape from a local minimum and reach the global optimal for 

a non-optimal state.  Algorithms such as simulated annealing 

which use a single Markov chain may not be very efficient.  In 

practice, it is usually advantageous to use multiple Markov 

chains in parallel to increase the overall efficiency.  In fact, 

the algorithms such as particle swarm optimization can be 

viewed as multiple interacting Markov chains, though such 

theoretical analysis remains almost intractable.  The theory of 

interacting Markov chains is complicated and yet still under 

development.  However, any progress in such areas will play a 

central role in the understanding how population- and 

trajectory-based metaheuristic algorithms perform under 

various conditions. 

 

In addition, a Markov chain is said to be ergodic or 

irreducible if it is possible to go from every state to every state.  

Furthermore, the use of a uniform distribution is not the only 

way to achieve randomization.  In fact, random walks such as 

Levy flights on a global scale are more efficient.  On the other 

hand, the track of chaotic variable can travel ergodically over 

the whole search space.  In general, the chaotic variable has 

special characters, i.e., ergodicity, pseudo-randomness and 

irregularity.  To enrich the searching behavior and to avoid 

being trapped into local optimum, chaotic sequence and a 

chaotic Levy flight can be incorporated in the meta-heuristic 

search for efficiently generating new solutions.  In the paper 

[29], we presented synergistic strategies for meta-heuristic 

optimization learning, with an emphasis on the balance 

between intensification and diversification.  We showed some 

promising efficiency for global optimization.  Interestingly, it 

can be viewed to link with optimization search and Markov 

chain sampling under appropriate conditions. 

 

IV. SIMULATION RESULTS 

Met-enkephalin has 24 dihedral angles, that according to our 

definition of a space search means that a set of 24 variables 

will be optimized.  In the following table, we show our results 

of the best low-energy conformations of Met-enkephalin 

using the proposed global optimization method. 
 

Tyr   -83.5 

  155.8 

  -177.2 

1  -173.2 

2  79.4 

3  -166.4 

Gly   -154.3 

  86.0 

  168.5 

Gly   82.9 

  -75.1 

  -170.0 

Phe   -136.9 

  19.1 

  -174.1 

1  58.9 

2  94.6 

Met   -163.5 

  161.2 

  -179.8 

1  52.9 

2  175.3 

3  -179.8 

4  58.6 

Energy -11.707 

V. CONCLUSION 

Protein function is related to its structure.  In order to predict 

the protein structure computationally, protein must be 

represented in favorable representation.  An efficient energy 

function should be used to calculate the protein energy, and 

then a conformational search algorithm must be applied to 

find the lowest free energy conformation.  To this end, an 

energy function is used to calculate its energy and a 

conformational search algorithm is used to search the 

conformational search space to find the lowest free energy 
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conformation. Markov chain Monte Carlo is a family of 

simulation methods, which generate samples of Markov 

Chain processes.  In this paper, we set up a framework of 

Markov chain sampling to search the protein conformational 

search space. The proposed algorithm was able to find the 

lowest free energy conformation of Met-enkephalin using 

ECEPP/3 force fields. 
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