

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017

 86 www.erpublication.org

Abstract— This paper referred a graph-coloring approached

algorithm for the exam time tabling problem specificities

application, with the concrete objective of achieving fairness,

accuracy, and optimal exam time period allocation. Through the

work, we have considered some assumptions and constraints,

closely related to the handling exam time tabling problem, and

this mainly driven from experience at various colleges. The

performance concern of the algorithm has mention in this paper.

Index Terms— Exam Time Table, Graph Algorithms, Graph

Coloring, Exam Scheduling, Performance Improvement,

Performance Analysis.

I. INTRODUCTION

 An undirected graph G represented by an ordered pair (V,

E) where V represents a set of nodes and E represents a set of

edges between nodes. Two nodes (i, j) are adjacent if and

only if there is an edge between i & j. The graph coloring is a

well-known approach to solve exam time table problem [1, 3,

4, 5, 7]. In graph coloring, assigned colors to the nodes of the

graph such that no two adjacent nodes have the same color.

Since last decade, Exam Time tabling Problem has been a

challenging task that universities faces General graph

coloring algorithms are well known and have been

extensively studied by researchers [2, 3, 4, 6, 7, 10, 11, 13, 14,

15, 16]. and have been extensively studied by researchers [2,

3, 4, 6, 7, 10, 11, 13, 14, 15, 16].

The challenge is to schedule exams of running courses in

university in a limited period of time repeatedly. Schedule the

exam time table in a way that avoid the confliction (collapse)

of time-slot, i.e. no two or more exams for the same student

are allotted at the same time. A fair schedule does not allow to

schedule more than two time-slots for a student on one day. In

the fairness in schedule, it does not leave a big gap between

exams for the students. The exam

scheduling problem can be defined as follows: "We

denoted the courses by nodes of a graph,

Where two nodes are adjacent if the two corresponding

courses are taken by at least one student. Then, it is required

to assign each course represented by a node as time-slot, such

that no two adjacent nodes have the same time-slot, in this

manner condition that a set of constraints referred in

theproblem are also met." We can also solve this problem by

using graph coloring mythology.

Md. Atahar Hussain, Research Scholar, Dept. of Computer Science &

Engineering, NIET, Greater Noida India Mobile No. 7503965586

Nagesh Sharma, Assistant Professor in Information Technology

Department at, Noida Institute of Engineering & Technology GreaterNoida

India MobileNo.-9999100436,

Ram Kumar Sharma, Assistant Professor in Information Technology

Department at, Noida Institute of Engineering & Technology Greater Noida

India MobileNo. 9654624322,

In this way, a mechanism for automatic exam time able

generation that can be describe the fairness and accurately in

allocating timeslots in examination schedule. As a result, this

paper shows a graph-coloring-based algorithm for the exam

time tabling application which acquires the objectives of

fairness, accuracy, and optimal exam time-slot. The main

difference between various studies is the set of assumptions

and constraints taken into consideration. Burke, Elliman and

Weare [11], followed a similar approach using graph

coloring. However, in their algorithm, they pointed only the

conflicts without any constraints. Moreover, the algorithm

pointed in [11] only minimized the conflicts rather than

eliminating them. In this paper, we pointed important

assumptions and constraints, closely related to the exam Time

tabling problem that driven from the real life requirements

collected from various universities. Such assumptions and

constraints are distinct from other graph coloring problems.

We have summarized these assumptions and constraints as

follows:

1. The number of time-slot (TS) per day (exam period) can

be set by the administrator. TS depend on department

specific constraints. For example, a university that uses a

3-hours exam period and begins the exam day at 9:30 am

and finish at 5:00 pm, may set TS to 2.

2. The number of concurrent exams or concurrency level

(NP), depends on the number of available rooms, and the

availability of faculty member to conduct the examination.

Np is determined by the registrar’s office. Here Np is a

system parameter and the exam scheduling algorithm has

been examined with several NP values.

3. A student shall not allow for more than (x) exams per day

and this is referred as a system tunable parameter.

4. A student shall not have a gap of more than (y) days

between two consecutive exams, and it also determined by

department (another fairness requirement).

5. The schedule shall be done in the minimum possible

time-slot.. The exam schedule is an outcome of the

scheduling algorithm.

6. Now, we give some relevant definitions to the underlined

problem. Let N be a list of all courses to be scheduled. The

length of this list is n.

A course at position i in the list N is referred to using an

index Ni. Let G be the graph that represents the list N of

courses. We impose a weight Wij to each edge of graph G,

where Wij is defined as the number of students present in both

courses Ni and Nj. An edge eij exists between nodes Ni and Nj

iff Wij is not 0. We define a weight matrix W to be an NXN

matrix, where n is the number of courses to be scheduled for

the exams, and Wij equals the weight of the edge eij that joins

the courses Ni and Nj. Such a weight on the edges of graph G

represents the exam conflict complexity in courses Ni and Nj.

An Improved Approach for Examination Time

Tabling Problem Using Graph Coloring

Md. Atahar Hussain, Mr. Nagesh Sharma, Mr. Ram Kumar Sharma

An Improved Approach for Examination Time Tabling Problem Using Graph Coloring

 87 www.erpublication.org

The degree Di of a node Ni is defined as the number of edges

connected to that node. A large degree of a node Ni indicates

that there is a large number of students registered in this

course. The degree Di is also a measure of conflict

complexity. An example of a weighted graph G and the

corresponding weight matrix W is given in Figure 1 and Table

1, respectively. In Figure 1, N2 and N5 both have degree 3. In

Table 1, the weight of the edge e15 is 6.

II. THE COLORING SCHEME DESCRIPTION

The coloring scheme for the exam time tabling problem uses a

double indexed color (CAB), where the index (A) represents

the day of the exam and (B) represents the exam time-slot on a

given day. The range of (B), show the number of exam time

slots is allocated by the registrar.

The range of the index (A) is a parameter generated as an

outcome by the algorithm. Objective of algorithm is to

minimize the index (A). The parameter A is also be set by the

registrar and administrator. It also is bound by optimal

number of colors for the given graph. However, finding

optimal is known to be NP complete. The algorithm imposed

in this paper is to achieve optimal performance (minimal

number of colors) in polynomial time.

 N1

6 2

N5

N2

 3

4 1

N4 N3

2

Figure 1. A weighted graph G.

Table 1. A weight matrix W of the graph.

 N1 N2 N3 N4 N5
N6

N1 0 2 0 0 6

0

N2 2 0 1 0 3 7

N3 0 1 0 2 0 0

N4 0 0 2 0 4 0

N5 6 3 0 4 0
2

N6

0 7 0 0 2

0

We define the weight of a color to be W (CAB) = (A-1)*l +

B; l is the range of B. a color CAB is said to be smaller than

color CYZ if the weight W (CAB) is smaller than W (CYZ). The

coloring scheme allows two or more non-adjacent nodes to

have the same color (CAB). The number of nodes having the

same color referred the number of concurrent exam time-slot,

which is bounded by the number of available rooms and the

maximum allowable concurrent sessions by the administrator.

In graph coloring problems, there is no restriction on the

assignment of the same color to non-adjacent nodes in the

graph. The exam-time tabling problem as explained above

imposes a constraint on the maximum number of nodes

assigned the same color. The Time scheduling algorithm

allows the user to impose a maximum limit on the number of

available color CAB. The number of instances of a color CAB is

referred to as the concurrency limit of the color CAB denoted

CL (CAB). Note that a course with multiple sections is

assigned one color. However, the multiple sections will

consume multiple instances of the same color, assuming that

each section will make the exam in a separate room.

2.1 Fairness and Accuracy of Algorithm

To achieve fairness, the algorithm defines the following

parameters:

1. Internal distance (DI): This is the distance between two

colors (CAB) and (CAC) with the same index (A) and

indexes B and C, and defined by

DI = |C-B| (1)

DI represents the exam scattering on the same day A for the

same set of students.

2. External distance (DE): This is the distance between two

colors (CAB) and (CCD), and defined by

DE = |C-A| (2)

DE represents the exam scattering across different days.

3. Total distance between colors (CAB) and (CCG) is given by

D = γ * DE+ DI, (3)

OR

D= γ *(|C-A|) +|G-B| (4)

The factor (γ) can be varied for different coloring scheme.

Here distance D is a design parameter of the algorithm.

2.2. Important Specialized Considerations

Time tabling problem has consideration at the

implementation level. For example, node with large degree

represents a course in which many students are registered to

many other courses. Also, nodes with large degrees have large

number of students. In order to have an efficient time

schedule; the nodes with larger degrees should be colored

first. By Giving priority to the nodes with the larger degrees

which tend to schedule the university required courses early

in the exam period. The weight of an edge depicted the

number of common students registered at both courses

 N6

2
7

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017

 88 www.erpublication.org

(nodes) connected to that edge. Giving priority in the coloring

algorithm to nodes connected to a large weight-edge will

enable a solution optimization towards the larger groups of

students. Another point to consider before we evaluating the

algorithm is the multi-section courses. Multi-sections of a

multi-sections course should be allocate at the same time, and

thus, the corresponding nodes should have one color. And

also, they occupy several rooms. The number of rooms used

by a course has an impact on the concurrency level per time

slot. When such multi-sections are scheduled for a time slot a

color, the concurrency level is to be reduced by the number of

sections for that course. For implementation purposes, we

depict the nodes of the graph with a value equal to the number

of sections in the course; we shall call this value the course

concurrency level CL (Ni). Thus, we assign a concurrency

limit for each color Np (CAB).

After assigning a color to a node Ni, we reduce the

concurrency limit of the color by CL (Ci). The concurrency

limit is set by Administrator and depends on the number of

available rooms, and staff to monitor the exams.

III. ALGORITHM FOR GRAPH COLOR SCHEDULE

The algorithm consists of two major steps. The first step is to

builds the weight matrix and graph. The second step is assign

colors to the nodes of the graph.

3.1 Main Algorithm

1. Draw Weight Matrix and Graph

1. Show files for students and listing all courses studies

by student, which is use for scheduling for the

examination. Each course corresponds to a node in the

matrix. Set the concurrency level of each node to the

number of sections for the given course.

2. In this case, each node implies the course, and find the

set of adjacent nodes, including the weight of the

edges connecting the node to its adjacent nodes. Fill

the weight matrix WM with weight values W.

3. Create an undirected graph using the weight matrix.

4. Find the degree for each node in the graph.

2. Color the Graph

Arrange the nodes in the weight matrix in a descending

order on the basis of degree of nodes. Nodes with similar

degrees are ordered based on the largest weight W in its

adjacency list. Nodes with similar degrees D and weights

W are ordered based on their node id (smallest ID first).

Set sortedCourse = The sorted list of nodes

mentioned in above Step 1.

Set numberOfColoredCourses = 0

For i = 1 to sortedCourseLength do

Begin

If numberOfColoredCourses =

numberOfCourses then exit loop and

finish

If Ni is not colored then

Begin

If i = 1 then

Begin

Cab = getFirstNodeColor (Ni)

If Cab = null then Exit and finish, {No

schedule is possible.}

End

Else

Begin

Cab = getSmallestAvailableColor (Ni) End

If Cab != null then

Begin

Set Color (Ni) = Cab

numberOfColoredCourses =

numberOfColoredCourses + 1

CL (Cab) = CL (Cab) - CL (Ni) End

End

Set Array M = getOrderedAdjacencyCoursesOfNi

()

For j = 1 to numberOfCoursesInArrayM do Begin

If Mj is not colored then

Begin

Ccd = getSmallestAvailableColor (Mj) If

Colorcd != null then

Begin

Set Color (Mj) = Ccd

numberOfColoredCourses =

numberOfColoredCourses + 1

CL (Ccd) = CL (Ccd) - CL (Mj) End

End End End

3. Color the neighbour node

1. Description of Sub_routine “getFirstNodeColor”:

Input : The course Ni that needs to be

Colored.

Output: The color assigned to Ni or null.

Algorithm:

For a = 1 to maxScheduleDays do: For b =

1 to numberOfTimeSlots do:

If CL (Colorab)) ≥ CL (Ni) then return Colorab return

null

2. Description of Sub_routine

“getSmallestAvailableColor”:

Input: The course Ni that needs to be

colored.

Output: The color assigned to Ni or null.

Algorithm:

An Improved Approach for Examination Time Tabling Problem Using Graph Coloring

 89 www.erpublication.org

get AL(Ni), the AdjacencyList of Ni For j

= 1 to maxScheduleDays do Begin

For k = 1 to numberOfTimeSlots do:

Begin

Set valid = true

For r = 1 to Length (AL (Ni)) do

Begin

CEF = Color (ALr)

If CEF ! = null then

Begin

If E! =j or F! =k then

Begin

If DE {(CEF), (Cjk)} = 0 then

Begin

If DI {(CEF), (Cjk)} <= 1 then

Begin

Valid = false

Exit loop End

End

If CL (Cjk) <= CL (Ni) then

Begin

Valid = false

Exit loop End

If check3ExamsConstraint (Ni, Cjk , j) = False

then

Begin

 Valid = false Exit loop

End

End

Else

Begin

 Valid = false Exit loop

End

End

Else Exit the current iteration of loop End

If valid = true then Return Cjk

End

End return

null

3. Description of Sub_routine

“check3ExamsConstraint”:

Input : The course Ni that needs to be

colored.

The color CAC that needs to be tested.

The day j for Colorkd

Output: returns true if color is valid,

Otherwise it returns false Algorithm:

get a list of students Si registered in course Ni

For r = 1 to Length (Si) do:

Begin

Set Counter = 0

For q=1 to NumberOfTimeSlots do:

Begin

Get a list of courses CRS assigned to Cjq For

u = 1 to Length (CRS) do:

Begin

Get a list of students Su registered in

course Nu

If Sir exists in list Su then

Begin

Counter = Counter + 1

If Counter = 2 then return false End

End End

End

return true

3.2. Complexity Analysis

A. We assume that largest degree D = DN; and that node v1

has degree K1

A1. Step 1 assigns the smallest color, say N1 to node v1. The

total number of steps required to color all the nodes in the

neighbor list of v1 is

1+2+3+ … + DN = (DN
 2
+ DN)/2 = O (DN

 2
)

A2. Repeat the coloring procedure for the next node v2 with

degree D2. The number of steps required to color all the

nodes adjacent to node v2 is

1+2+3+ … + D2= (D2
2
+ D2)/2 = O (D2

2
)

B. In general, the number of steps required to color all the

nodes in the neighbor list of any node vi with degree di is

 (Di
2
+ Di)/2 = O (Di

2
)

C. Let the average degree of nodes be ρ. Then the average

number of steps required to color the neighbors of node vi

with degree ρ is O(ρ
2
)

 C1. Repeat the coloring procedure in step 1 and step 2

until all nodes are colored.

 C2. Since each coloring step colors on the average ρ

nodes, the coloring procedure will be repeated on the

average (n/ρ), where n is the number of nodes.

 C3. The total number of coloring steps required to color all

nodes, on the average is

O ((n/ ρ). (p 2) = O (n. ρ)

The complexity equation (above) can expressed as

 n n

 ∑ρ , where ρ P= (∑Di)/n.

i1 i1

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017

 90 www.erpublication.org

3.3. Algorithm Efficiency Analysis

Our algorithm has a linear complexity, except when (ρ = n-1)

and hence a polynomial solution of the second degree. We

prove the following:

Lemma: The algorithm described above achieves the

minimum number of colors, when the upper bound of colors is

given by the clique (largest completely connected sub-graph).

Proof: A completely connected graph with size P requires P+1

color. The algorithm detects the clique in the graph. The

algorithm also detects the clique related to each node in the

graph starting from the node with the largest degree. Then, the

algorithm use to colors the largest completely connected

sub-graphs first, thus utilizing the minimal available colors to

color in the sub-graphs. For each node, the algorithm will not

use more colors than those required by the largest completely

connected sub-graph. Thus the largest number of colors used

by the algorithm is only that required by the largest sub-graph,

which is the absolute minimal possible number of colors.

IV. PERFORMANCE ANALYSIS

The algorithm for examination scheduling using graph

coloring approach was applied to a course list of a educational

institution. The number of courses in the test is 150 with an

average of two sections per course, for a total of 700 exams

per session to schedule. The graph produced for the courses

has an average degree of 28 and a maximum degree of 334.

The coloring algorithm completed in 60 seconds. This

algorithm has implemented in Python. We ran the algorithm

with different parameters. Number of exam time-slots per day

(2, 3, 4, 5) treats as variable. In this way, concurrency limit is

varied between 8 and 96. The most important constraint is that

a student cannot have more than two exams per day. The

administrator can plots for decide on the number of days and

number of exam sessions per day for examination schedule.

For example, with 2 exam slots per day, the exam period can

be completed in 30 days with 40 sessions per day.

Note that administrator can produce several schedules in a

short period of time and select the appropriate schedule. Note

that the execution time is a linear function of the number of

courses. The average degree does not increase at the same rate

as the number of courses. Furthermore, we have tested our

algorithm against 5 samples of the 13 Toronto data sets

collected from 13 institutions. In this test, we have taken two

factors under consideration, namely as the number of slots

and the penalty. With respect to former factor, that show that

their results slightly outperform. With respect to the recent

factor, we get closed results are obtained, in this case, our

algorithm have beat in some sets, and has been beat in some

other sets. The results of this algorithm are shown in Table-2,

and results plotted in Figure-4 and Figure-5, respectively. In

Toronto case, some drawback is mentioned here such as there

was nothing mentioned about the maximum possible

concurrent exams per time-slot, which does not impose a

constraint on issue. In our case we included. Also, in Toronto

case, another drawback has nothing mentioned about the

number of days, only, they use number of time slots. So, when

we run to compare with respect to this factor, we have counted

number of time-slots used in all days of our algorithms to get

the total number of time-slots used by the examination

schedule.

Figure 2. Results with respect to Slots

Figure 3. Results with respect to penalty.

 Toronto Results Our Algorithm

Benchmark

Data Slots Penalty Slots Penalty

ZOO91 37 4.68 64 5.10

BOT92 33 3.83 54 3.95

STAT93 22 13.85 30 16.21

MAT94 27 8.75 41 6.01

PHY95 19 35.82 36 22.20

 Table 2. Results of our algorithm vs Toronto results.

V. CONCLUSION AND FUTURE WORK

The number of concurrent exam or concurrency level (Np)

depends on the number of available rooms and availability

of faculty member to conduct the exams. The value of Np is

usually assigned by the administrator and this paper

assumes that Np is a system parameter, and we will run the

Time table schedule algorithm with several Np values. In a

later work, the actual distribution of exam time-slot to

rooms will be included.

This algorithm imposed in this paper is to achieve near

optimal performance by choosing minimal number of colors

in polynomial time. We are currently finding a modification

of the algorithm, which will achieve the absolute minimal

for a certain set of graphs.

An Improved Approach for Examination Time Tabling Problem Using Graph Coloring

 91 www.erpublication.org

REFERENCES

[1] Bang-Jensen J. and Gutin G., Digraphs: Theory, Algorithms and

Applications, Springer-Verlag, 2000.

[2] Bean D., “Effective Coloration,” The Journal of Symbolic Logic,

[3] Alon N., “A Note on Graph Colorings and Graph Polynomials,”

Journal of Combinatorial Theory Series B, vol. 70, no. 1, pp.

197-201, 1997.

[4] Baldi P., “On a Generalized Family of Colorings,” Graphs and

Combinatorics, vol. 6, no. 2, 1990.

[5] Bar-Noy A., Motwani R., and Naor J., “The Greedy Algorithm is

Optimal for On-line Edge Coloring,” Information Processing Letters,

vol. 44, no. 5, pp. 251-253, 1992.

[6] Husseini S., Malkawi M., and Vairavan K., “Graph Coloring Based

Distributed Load Balancing Algorithm and Its Performance

Evaluation,” in the 4th Annual Symposium on Parallel Processing,

1990.

[7] Batenburg K. and Palenstijn W., “A New Exam Timetabling

Algorithm,” Leiden Institute of Advanced Computer Science

(LIACS), http://visielab.ua.ac.be/staff/batenburg/papers/ba

pa_bnaic_2003.pdf.

[8] Husseini S., Malkawi M., and Vairavan K., “Distributed Algorithms

for Edge Coloring of Graphs,” in the 5th ISMM International

Conference on Parallel and Distributed Computing Systems, 1992.

[9] Jensen T. and Toft B., Graph Coloring Problems, Wiley-Interscience,

1995.

[10] Burke E. and Petrovic S., “Recent Research Directions in Automated

Timetabling,” European Journal of Operational Research (EJOR),

vol. 140, no. 2, pp 266-280, 2002.

[11] Burke E., Elliman D., and Weare R., “A University Timetabling

System Based on Graph Coloring and Constraint Manipulation,”

Journal of Research on Computing in Education, vol. 27, no. 1, pp.

1-18, 1994.

[12] Burke E., Elliman D., and Weare R., “Automated Scheduling of

University Exams,” Department of Computer Science, University of

Nottingham, 1993.

[13] Christofides N., Graph Theory: An Algorithmic Approach,

Academic Press, 1975.

[14] Gross J. and Yellen J., Handbook of Graph Theory, Discrete

Mathematics and its Applications, CRC Press, vol. 25, 2003.

[15] Husseini S., Malkawi M., and Vairavan K.,“Analysis of a Graph

Coloring Based Distributed Load Balancing Algorithm,” Journal of

Parallel & Distributed Systems, vol. 10, no. 2, pp. 160-166, 1990.

[16] Bauernoppel F. and Jung H., “Fast Parallel Vertex Coloring,” in L.

Budach (eds.), Fundamentals of Computation Theory, FCT '85,

Cottbus, GDR, Sept, 985, vol. 199 of Lecture Notes in Computer

Science, pp. 28-35, Springer-Verlag, Berlin, 1985.

Md. Atahar Hussain, Research Scholar, Dept. of Computer Science &

Engineering, NIET, Greater Noida India Mobile No. 7503965586

Nagesh Sharma, Department Name Information

Technology, Noida Institute of Engineering & Technology Greater Noida

MobileNo.-9999100436

Ram Kumar Sharma, Department Name - Information

Technology, Noida Institute of Engineering & Technology Greater Noida

MobileNo.9654624322.

