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 

Abstract— Many process parameters in a wastewater 

treatment plant are expensive, difficult or even impossible to 

measure online, limiting the possibilities for efficient process 

monitoring and control. In this work, soft sensors were 

developed to provide on-line values for a number of parameters, 

primarily different fractions of phosphate (PO4 and total 

phosphorous), nitrogen (NO3, NH4 and total nitrogen), organic 

matter (COD) and suspended solids (TSS), at five different steps 

of the wastewater treatment process at the R&D-facility 

Hammarby Sjöstadsverk. The soft sensors were PLS (Partial 

Least Squares) models predicting the value of the 

hard-to-measure parameters based on easy-to-measure process 

parameters that were normally measured on-line or on acoustic 

data generated by acoustic sensors placed on the tanks of three 

of the five selected process steps. During a 13-day sampling 

campaign, data for the soft sensor development and validation 

were collected by laboratory analysis of the hard-to-measure 

parameters and combining them with corresponding 5 minute 

average values of the on-line parameters and the acoustic data. 

A majority of the soft sensors that were based on acoustic data 

had comparable or better performance than corresponding 

models using process data, indicating that data from acoustic 

sensors are of interest as input variables for soft sensors at 

WWTPs. The performance of the soft sensors varied 

significantly and some of them showed promising results. When 

removing the effect of the laboratory measurement error and the 

sampling error, 6 out of 26 soft sensor models had a so-called 

relative true prediction error less than 10% (NO3 in untreated 

water, COD, TSS and NO3 in the first bioreactor, NH4 in the last 

bioreactor and TSS in the membrane bioreactor). In 

combination with the proposed actions for further improvement 

of the models, the results suggest that soft sensors, that in many 

cases preferably could be based on acoustic data, is a possible 

approach to provide WWTPs with on-line process data.  
 

 
Index Terms— Acoustic sensor, Soft sensor, Wastewater 

treatment 

ABBREVIATIONS 

BR Bioreactor 

DO Dissolved oxygen (mg/L) 

COD Chemical oxygen demand - indirect measure of 

amount of organic matter (mg/L) 

CODf Dissolved COD (mg/L) 
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MBR 

 

Membrane bioreactor 

NH4 Ammonium nitrogen - nitrogen in the form of 

ammonium (mg/L) 

NO3  Nitrate nitrogen - nitrogen in the form of nitrate 

(mg/L) 

Ntot Total nitrogen (mg/L) 

PO4 Phosphate phosphorous - phosphorous in the form 

of phosphate (mg/L) 

Ptot  Total phosphorous (mg/L) 

TSS Total suspended solids - solid particles in 

suspension (mg/L) 

TTF Time to filter - sludge filterability (s) 

TTFnorm Time to filter normalized with TSS (s10
-4

/(mg/L)) 

UF 

WWTP 

Ultrafiltration 

Wastewater treatment plant 

I. INTRODUCTION 

The composition and flow rate of wastewater entering a 

wastewater treatment plant (WWTP) varies greatly during a 

day as well as between seasons and different weather 

conditions. Due to the heterogeneity of wastewater and the 

harsh environment it provides for sensors, many of the 

parameters relevant for monitoring and control of the process 

are expensive, difficult or even impossible to measure online, 

or require substantial maintenance. Some of these parameters 

are then instead manually analyzed in daily or weekly 

composite samples providing results sometimes several days 

or weeks after the samples were taken. Due to the rapidly 

changing characteristics of the wastewater in combination 

with the infrequent sampling and the long response time, it is 

problematic to use the values of manually analyzed 

parameters to control the plant efficiently. If WWTPs instead 

had access to real-time values of the important parameters, it 

could result in a decrease in costs and environmental impact 

due to more efficient use of chemicals and energy, and also in 

a decrease in the amount of pollutants that is released to the 

recipient with the effluent.  

One way of providing WWTPs with real-time values for 

parameters of interest is to use soft sensors, which is the 

approach used in this article. A soft sensor is a virtual sensor 

that predicts the value of a parameter whose value is 

unknown, e.g. a parameter that is hard to measure online, 

solely based on values of other parameters whose values are 

known, e.g. parameters that are easier to measure online.  

The multivariate statistical regression method that was 

found suitable for developing the soft sensor models in this 

work is PLS (Partial Least Squares or Projection to Latent 

Structures) [1],[2]. With PLS, the aim is to establish the 

relationship between input (x) variables, and output (y) 

variables. A PLS model is calculated in such a way that it 
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describes as large portion as possible of variance in the data, 

at the same time as it maximizes the covariance between the 

x-variables and the y-variables. The final result is an equation 

expressing y as a linear combination of the x-variables. There 

are several relevant papers regarding process data based soft 

sensors in WWTPs. In an early work, Mujunen et al. used 

PLS to model a wastewater plant with activated sludge 

treatment[3]. Rosén et al. presented solutions and challenges 

regarding use of multivariate models in waste water treatment 

[4]. A recent work with similar scope is the work by Haimi[5]. 

Another option is to use acoustical spectra as input 

variables for the soft sensors rather than ordinary process 

data. For a general introduction to the use of vibration 

measurements to predict the properties of different fluids, as 

well as a background on vibrations, measurement technology, 

signal processing, multivariate analysis and applications, see 

[6]. There are several industrial applications for acoustic 

spectra as a basis for determining parameters for process 

monitoring or control. Some examples are to use it for 

monitoring of oil production wells[7], for prediction of 

content of different types particulate material (e.g. alumina, 

PVC, sand) in a pneumatic transport-tube [8], in industrial 

plastic granulation process utilizing microphones [9], in 

mechanical paper pulp production for measurements of pulp 

quality[10],[11],[12] and for determining food textural 

properties of snacks[13]. As shown by these references, 

vibration measurements can be used to determine properties 

of different fluids, and could presumably serve as 

input-variables for soft sensors in form of acoustic spectra 

generated by acoustic sensors installed in a wastewater 

treatment process. 

This article covers the development and evaluation of soft 

sensors for a number of parameters in different process steps 

in a wastewater treatment process. The softs sensors were 

based on ordinary online process variables as well as acoustic 

spectra from accelerometers mounted on process reactors. 

II. MATERIALS AND METHOD 

The soft sensors were developed for the pilot scale WWTP 

Hammarby Sjöstadsverk in Nacka, Sweden[14], for which a 

process overview is presented below.  

Data for the soft sensors were generated by laboratory 

analysis of samples collected during a sampling campaign and 

by gathering corresponding process data and acoustic data 

from the control system. This is described in more detail in the 

sections for ―Sampling and data collection‖ and ―Laboratory 

analysis‖. Soft sensor PLS models were then calculated and 

thereafter externally validated, procedures that are covered by 

the ―Modelling and validation‖ section.    

A. Process overview  

The study was performed at line 1 at the pilot WWTP 

Hammarby Sjöstadsverk (Fig. 1). Line 1 is a pilot scale 

membrane bioreactor (MBR) of thefuture Henriksdal plant, 

Stockholm’s largest WWTP, and has a capacity 

corresponding to 250 connected persons. The first process 

step is pre-sedimentation, where phosphorous containing 

sludge settles to the bottom of the basin after the addition of a 

coagulant. In the following biological treatment, consisting of 

three unaerated bioreactors (BR1-3) and three aerated 

bioreactors (BR4-6), nitrogen is removed from the water in 

the form of nitrogen gas by the microorganisms in the 

continuously recirculating sludge. Water is re-circulated from 

the aerated to the unaerated bioreactors to facilitate the 

nitrogen removal. In the membrane bioreactor (MBR), the 

sludge is separated from the water by a submerged ultrafilter 

(UF). The majority of the sludge is re-circulated to retain a 

high concentration of microorganisms in the biological 

treatment step, and the water passing through the filter is 

ready to be released to the recipient. 

B. Sampling and data collection 

During 13 days in October 2014, grab samples were 

collected from incoming (untreated) wastewater, BR 1, BR5, 

BR6 and from the MBR(the unit with an UF). Which 

parameters to analyze were selected based on their relevance 

in each process step. Samples for analysis of PO4, NH4, NO3 

and CODf were manually collected every fourth hour between 

08:00 and 16:00 on weekdays and were filtered through a 0.45 

μm syringe filter within 2 minutes after collection. Samples 

for analysis of Ptot, Ntot, TSS, COD and sludge filterability 

(TTF) were collected with automatic samplers (6712 Portable 

Sampler, Isco) every fourth hour around the clock every 

second day. The samples were stored in the partially ice-filled 

insulated samplers and/or in a +4⁰C fridge until analyzed.   

In addition to the standard online sensors, the process line was 

also equipped with acoustic sensors (Ceramic Shear 

Integrated Electronic Piezoelectric Accelerometer Type 

8714B100M5, Kistler) on BR1, BR5 and MBR. 

 

 
Figure 1. Schematic overview of the treatment line at 

HammarbySjöstadsverk used for development of the soft 

sensors. The incoming water is named IN and effluent is 

named OUT. The line consists of a pre-sedimentation (PS), 

three unaerated bioreactors (BR1-3), three aerated BR 

(BR4-6) and a membrane bioreactor (MBR) with the 

submerged UF 

 

 
Figure 2. . Data collected from the different process steps 

during the sampling campaign: parameters measured with lab 

analysis (dash outline) and parameters from the control 

system (dash dot outline). 

Two cDAQ 9181 chassis with respectively one NI 9234 

IEPE and AC/DC Analog Input module (from National 

instruments) were used to collect data from the 

accelerometers. LabVIEW was used as programing language 
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to gather data from the modules, compute power spectra from 

each accelerometer and save data to the PostgreSQL 

database. The frequency range was 0-25.6 kHz for the 

spectra, with 1024 frequency bins.  

Values from the sensors were stored in the database every 

minute together with other process parameters. 5 minute 

average values were calculated for each of the parameters, 

and the average values corresponding to the manual sampling 

times were used for the modelling. The parameters available 

from each process step are summarized in Fig. 2. 

A. Laboratory analysis 

The concentrations of PO4, Ptot, NH4, NO3, Ntot, COD and 

CODf were determined in mg/L with cuvette tests (WTW) 

that were analyzed with a spectrophotometer (photoLAB 

6600 UV-VIS, WTW). TSS was measured in mg/L by 

filtering the sample through a standard 55 mm GF/F glass 

fiber filter with 1.6 micrometer pores that had been previously 

dried in 105˚C. After the filtration, the filter was dried in 

105˚C over night. TSS was calculated by dividing the 

difference in filter weight before and after filtration with the 

volume of sample that was filtered. The sludge filterability 

was measured in terms of time to filter (TTF), i.e. the time in 

seconds required for a certain volume of sample to pass a 90 

mm glass microfiber filter with 1.5 micrometer pores (Grade 

934-AH RTU, Whatman, GE Healthcare) with a vacuum of 

15 mmHg. This was done according to the method specified 

in GE Water & Process Technologies, 2009. Also, a TTF 

value normalized with TSS was calculated according to (1).  

  

    (1) 

B. Model calibration and validation 

Soft sensor models were developed for all manually 

analyzed parameters. Before calculating the models, data 

were split into a calibration set for the calculation of each 

model, and a validation set for external validation of the 

model. The first 1/6 and last 1/6 of the data were selected as 

validation set, and the rest was used as calibration set. All 

data, except for the acoustic data, were centered and scaled to 

unit variance before modelling.  

PLS models were calculated for the data in the calibration 

set. To improve the models, x-variables that did not contribute 

to the models were excluded. The decision of which 

x-variables to exclude was based on each variable’s 

VIP-value, which reflects the extent to which the variable 

explains X and correlates to Y. [15],  

To evaluate the models and select the best model for each 

parameter, a combination of cross validation and permutation 

testing was used. The cross-validation gave an estimate of the 

predictive power of the models and was made with 7 cross 

validation groups, where the first 1/7 of the observations 

formed the first group, the second 1/7 of the observations 

formed the second group and so on. The response permutation 

testing was then used to decrease the risk of selecting models 

that were overfitted to the calibration data. For more 

information, see [15]. The best model for each parameter in 

each sampling point was then externally validated with the 

data in corresponding validation set. The statistical measures 

used for evaluation of the models are presented in (2) – (8) in 

Appendix.  

The software used for the modelling was SIMCA 

v14.1(MKS Data Analytics Solutions). 

 

Table 1. Number of observations available for the parameters 

measured in each sampling point.  

  IN BR1 BR5 BR6 MBR 

NO3 28 28 28 28 28 

NH4 28 28 28 28   

PO4 28 28     28 

CODf 28 27       

TSS 42 42   42 36 

Ptot 42 42       
Ntot 42 42       

COD 42 42       
TTF         36 

Acoustic spectra 57 57 57 57 57 

Process 

parameters 
57 57 57 57 57 

III. RESULTS AND DISCUSSION 

A. Sampling and data collection 

The sampling campaign resulted in 27 to 42 values for each 

analyzed parameter in each sampling point (Table 1). 5 

minute average values were calculated for corresponding 

process parameters and acoustic signals from the control 

system. Thus, the number of observations was limited for both 

the modelling and the external validation. 

B. MModel calibration 

Several models were then developed for each parameter. 

The best model for each parameter with respect to Q
2
 and 

RMSEcv, and that still passed the permutation testing was 

selected for further validation. The selected models consisted 

of a wide range of different x-variables and were of very 

varying qualitywith respect to R
2
, Q

2
 and RMSEcv. In the 

cases where both process parameters and acoustic data were 

available, models containing only one of the two data types 

were prioritized if the performance of the models were 

comparable. The properties of the selected models are 

summarized in Table 2, and the specific x-variables that were 

used in each model are presented in Table 4 in Appendix.  

C. Model validation 

The best model for each parameter was externally validated 

with data from the beginning and the end of the sampling 

campaign. The external validation was evaluated based on the 

prediction error (RMSEP and rel RMSEP) and the true 

relative prediction error (RMSEPtrue and relRMSEPtrue).  

To calculate RMSEPtrue and relRMSEPtrue according to (7) 

and (8) in Appendix, estimations of measurement error and 

sampling error were needed. For the parameters analyzed with 

cuvette tests, the measurement error was defined as the 

measurement uncertainty specified for each test by the 

manufacturer, and for TSS and TTF it was defined as 5% of 

the average value for each parameter in the training set. The 

sampling error was assumed to be 5% of the average value for 

each parameter in the training set. 
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Pos Y X Samples A R2 Q2 Y range RMSEcv 

IN Ptot 4 process variables  28 1 0.611 0.529 1.8 -10.3 1.28 

Ntot 4 process variables 28 1 0.417 0.355 4.3 - 68 11.8 

COD 4 process variables  28 1 0.557 0.369 245 - 857 132 

TSS 3 process variables  28 1 0.263 0.113 98 - 368 77 

PO4 5 process variables  19 2 0.915 0.837 1.0 - 4.6 0.45 

NO3 4 process variables  19 2 0.751 0.491 0.06 - 0.88 0.17 

NH4 5 process variables  19 1 0.855 0.812 4.3 - 43.2 4 

CODf 4 process variables  19 1 0.66 0.612 63 - 347 49 

BR1 Ptot 513 acoustic variables 28 3 0.987 0.851 133 - 193 9.9 

Ntot 513 acoustic variables 28 1 0.377 -0.024 120 - 240 27.1 

logCOD 513 acoustic variables 28 4 0.995 0.823 5620 - 10510 690 

TSS 513 acoustic variables 28 3 0.99 0.897 5080 - 7262 289 

PO4 513 acoustic variables 19 4 0.995 0.747 0.09 - 0.49 0.08 

NO3 513 acoustic variables 19 1 0.372 -0.1 0.01 - 0.94 0.3 

NH4 513 acoustic variables 19 3 0.944 0.842 0.6 - 9.6 0.23 

CODf 513 acoustic variables 18 2 0.909 0.766 47 - 102 8.8 

BR5 NO3 184 acoustic variables 19 3 0.906 0.754 0.16 – 6.1 1 

NH4 513 acoustic variables 19 4 0.996 0.815 0.02 – 1.7 0.37 

BR6 TSS 4 process variables 27 1 0.7 0.647 6419 - 8381 367 

NO3 3 process variables  19 1 0.656 0.573 0.05 – 4.9 1.11 

NH4 2 process variables 19 1 0.323 0.264 0.018 -1.597 0.559 

MBR TSS 14 process variables  24 3 0.958 0.89 7742 – 10033 336 

PO4 10 process variables  19 1 0.561 0.462 0.07 – 0.45 0.08 

NO3 12 process variables  19 2 0.761 0.643 0.07 – 6.5 0.98 

TTF 24 process variables 24 3 0.867 0.64 40 - 54 2.37 

TTFnorm 182 acoustic variables 24 5 0.912 0.584 46 - 58 1.88 

Table 2. Properties of the best PLS-model for each parameter. Pos – position of the soft sensor, Y – parameter,  

X – number and type of x-variables. Samples - number of samples that the model is based on, A – number of principal 

components in the PLS model, , R
2
 – variance explained by the model, Q

2
 – estimate of predictive ability,  

Y range – range of the parameter in the calibration set (in mg/L, s or sL/mg), RMSE. 

 

Pos Y Y range 

ME

* SE* RMSEP 

 
   

relRMSEP RMSEPtrue relRMSEPtrue 

IN Ptot 3.6-8.9 0.4 0.3 1.51 17.8 1.43 16.8 

Ntot 22 - 73 5 2.29 11.5 18.1 10.1 15.9 

COD 413 - 997 29 29.5 142 23.2 136 22.2 

TSS 150 - 394 11.4 11.4 75 27.8 73.2 27.1 

PO4 2.3 – 5.1 0.4 0.16 0.78 21.7 0.65 18 

NO3 0.08 – 0.61 0.3 0.02 0.17 20.7 0 0 

NH4 16.8 – 40.8 1.9 1.26 5.8 14.9 5.33 13.7 

CODf 116 - 339 29 10.8 43 15.1 29.9 10.5 

BR1 Ptot 137 - 191 0.06 8.03 11.8 19.7 8.65 14.4 

Ntot 170 - 240 0.5 9.34 31.6 26.3 30.2 25.2 

logCOD 6250 - 8350 29 348 581 11.9 465 9.5 

TSS 5587 - 7089 298 298 406 18.6 0 0 

PO4 0.22 - 0.72 0.06 0.01 0.27 67.5 0.26 65.8 

NO3 0.05 - 0.40 0.3 0.01 0.25 26.9 0 0 

NH4 2.3 - 8.4 0.2 0.26 1.21 13.4 1.16 12.9 

CODf 64 - 116 7 3.89 15.2 27.6 12.9 23.5 

BR5 NO3 0.32 – 6.3 0.3 0.16 2.1 35.4 2.07 34.9 

NH4 0.014 – 1.076 0.05 0.02 0.53 31.5 0.53 31.4 

BR6 TSS 7113 - 8027 361 361 494 25.2 0 0 

NO3 0.06 – 5.1 0.3 0.12 1.86 38.4 1.83 37.8 

NH4 0.016 – 1.005 0.05 0.02 0.137 8.7 0.12 7.9 

MBR TSS 8733 - 11503 437 437 310 13.5 0 0 

PO4 0.1 – 0.38 0.06 0.01 0.08 21.1 0.05 13.8 

NO3 0.11 – 5.0 0.3 0.14 1.39 21.6 1.35 21 

TTF 45 - 71 2.24 2.24 17 121.4 16.7 119.3 

TTFnorm 
50 - 67 2.56 2.56 16.9 140.8 16.5 137.6 

 

Table 3. Results from the external validation. Pos – position of the soft sensor, Y – parameter, Y range – range of the parameter 

in the prediction set (in mg/L, s or sL/mg), ME – measurement error of the laboratory analysis, SE – sampling error, RMSEP – 

prediction error of the model for external validation, relRMSEP - relative RMSEP, RMSEPtrue – RMSEP adjusted for 

measurement error and sampling error, relRMSEPtrue - relative RMSEP adjusted for measurement error and sampling error. 
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Out of 26 soft sensors, 4 models had a relRMSEP of less than 

15% (NH4 in untreated water based on process data, COD in 

the first bioreactor based on acoustic data, NH4 in the last 

bioreactor based on process data and TSS in the membrane 

bioreactor based on process data). 12 models had a 

relRMSEPtrue of less than 15%, out of which 6 models had a 

relRMSEPtrue of less than 10% (NO3 in untreated water based 

on process data, COD, TSS and NO3 in the first bioreactor 

based on acoustic data, NH4 in the last bioreactor based on 

process data and TSS in the membrane bioreactor based on 

process data). This indicates that the measurement error and 

the sampling error in many cases significantly affected the 

prediction error of the models. In some cases, the sum of ME
2
 

and SE
2
 even exceeded RMSEP

2
 (indicated by RMSEPtrue 

value of 0 in Table 3, where the results are presented in more 

detail).  

A. Concluding discussion 

For a majority of the parameters at the positions where 

acoustic sensors were installed (BR1, BR5, MBR), the 

models using acoustic data had comparable or better 

performance than corresponding models using process data. 

Thus, installing acoustic sensors in the process steps where  

 

acoustic data were not available could improve the soft 

sensors. This also indicates that acoustic measurements could 

have the potential to be used as input to soft sensors for 

WWTPs in general.  

Due to the relatively few observations available, the 

conclusions that can be drawn from this study are limited. 

Since the composition of the incoming wastewater varies 

greatly between seasons and different weather conditions, 

more sampling campaigns should be done. Preferably, they 

should be spread out over at least one year to generate data 

that is representable enough to be able draw more extensive 

conclusions about the suitability of soft sensors as a possible 

method to generate on-line data for wastewater treatment.  

One more aspect to take into consideration when 

interpreting the results from the external validation is that the 

amount of rainfall varied considerably during the sampling 

campaign, which significantly affected the composition of the 

wastewater. Compared to if there had been a more constant 

amount of precipitation during the sampling campaign, the 

changing weather conditions resulted in a dataset that 

represented a relatively wide range of different wastewater 

compositions, which is positive for the range for which the 

models are valid. But, it also increased the risk that the range 

of compositions in the external validation set was not covered 

by the calibration set, which results in that the external 

validation indicates that the predictive ability of the models is 

lower than if the validation set would have been representable 

for the calibration set.  

However, with this in mind, some of the soft sensors 

showed promising results, especially NO3 in incoming 

wastewater, COD, TSS and NO3 in BR1, TSS and NH4 in  

 

 

 

BR6 and TSS in the MBR, all of which had a relative true 

prediction error less than 10%.  

Moreover, the models can probably be further improved by 

optimizing the calculation of the acoustic spectra and the 

signal processing, for example by testing different spectral 

algorithms and weighting windows (e.g. Tukey) before 

applying fast Fourier transform to produce the spectra. It 

would also be interesting to evaluate other types of 

accelerometers, possibly with a narrower bandwidth and 

better sensitivity. 

IV. CONCLUSIONS 

Soft sensors were developed for 26 parameters at five 

process steps at the pilot scale WWTP Hammarby 

Sjöstadsverk in Sweden. A number of soft sensors showed a 

relatively good predictive ability, which indicates that soft 

sensors have the potential to provide WWTPs with on-line 

values for parameters relevant for process monitoring and 

control. 

For the majority of the parameters, the soft sensors that 

were based on acoustic data had comparable or better 

performance than corresponding models based process data. 

This brings us to the conclusion that data from acoustic 

sensors are of interest as input variables for soft sensors at 

WWTPs.  

It is also our belief that the soft sensors can be further 

improved by calibrating them with data generated during a 

longer period of time. This could reduce the prediction errors 

and as expand the validity domains of the models, and/or by 

improving the acoustic data by optimizing the calculation of 

the acoustic spectra and the signal processing or using other 

types of accelerometers. This further strengthens the 

conclusion that soft sensors is a promising approach for 

WWTPs. 

APPENDIX 

A. Quality of multivariate statistical models 

 

The quality of the PLS models can be represented by the 

following measures:  

 

R
2
 -the part of the variance explained in the calibration data, 

i.e. a measure of how well the model fits the calibration data. 

(2) 

where (y - y ̂)refers to the fitted residuals for the observations 

in the calibration set and n refers to the number of samples. 

 

Q
2
 - an estimate of the predictive ability of the model and is 

calculated by cross-validation. If Q
2
 is 1, the model predicts 

the data perfectly.  

(3) 

where(y - y ̂)refers to the predicted residuals for the 

observations in the calibration set during cross-validation, n 

refers to the number of samples and a refers to the principal 

components. 

 

RMSEcv (root mean square error of cross validation) – an 

estimate of the predictive power of the model based on cross 

validation. It has the same unit as the y-variable.  

(4) 

where (y - y ̂)refers to the predicted residuals for the 
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observations in the calibration set during cross-validation and 

n refers to the number of samples. 

 

RMSEP (root mean square error of prediction) - a measure of 

the predictive power of a model. It has the same unit as the 

y-variable. 

(5) 

where (y - y ̂)refers to the predicted residuals for the 

observations in the external validation data set and n refers to 

the number of samples. 

 

relRMSEP - a measure of the relative predictive power of a 

model. Given in %. 

(6) 

where (y - y ̂) refers to the predicted residuals for the 

observations in the external validation data set, nrefers to the 

number of samples and ymax-yminto the range of the y-variable 

in the calibration set. 

 

RMSEPtrue - a measure of the prediction error of the model 

after adjusting for the measurement error and sampling error. 

It has the same unit as the y-variable. 

(7) 

where RMSEP refers to the prediction error of the model, ME 

to the measurement error and SEto the sampling error. 

 

relRMSEPtrue- a measure of the relative prediction error of 

the model after adjusting for the measurement error and 

sampling error. Given in %  

(8) 

where RMSEP refers to the prediction error of the model, ME 

to the measurement error, SE to the sampling error, ymax-ymin 

to the range of the y-variable in the calibration set. 

B. Variables in models 

Pos Y X 

IN Ptot 4 process variables (Temp, Cond, pH, 

TSS) 

Ntot Q, Temp, pH, SS 

COD Temp, Cond, pH, TSS 

TSS Temp, Cond, pH 

PO4 Q, Temp, Cond, pH, TSS 

NO3 Q, Temp, Cond, TSS 

NH4 Q, Temp, Cond, pH, TSS 

CODf Q, Temp, Cond, TSS 

BR1 Ptot 513 acoustic variables 

Ntot 513 acoustic variables 

logCOD 513 acoustic variables 

TSS 513 acoustic variables 

PO4 513 acoustic variables 

NO3 513 acoustic variables 

NH4 513 acoustic variables 

CODf 513 acoustic variables 

BR5 NO3 184 acoustic variables 

NH4 513 acoustic variables 

BR6 TSS logDO, pH, Temp, Qin 

NO3 pH, Temp, Level 

NH4 logDO, logQin 

 

 

MBR TSS Level, Sludge content, Air flow, 

Qpremeate,  Levels TMP tanks, Level 

MBR tanks, CIP levels TMP tanks, 

Membrane fluxes, NO3 out, PO4 out 

PO4 Level, Sludge content, Qrecirc, Qpremeate,  

Level MBR tanks, Membrane flux, 

Membrane permeability, NO3out, Qin 

NO3 Level, DO, Sludge content, Air flow, 

Qpremeate, Levels TMP tanks, Level 

MBR tanks, CIP levels TMP tank, Line 

stat, Membrane flux, PO4out 

TTF Level, DO, Sludge content, Qrecirc, Air 

flows, Qpremeate, Levels TMP tanks, 

Level MBR tanks, CIP levels TMP 

tanks, Line stat, membrane fluxes, 

Membrane permeabilities, NO3out, 

PO4out, Qin  

TTFnorm 182 acoustic variables 
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