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 

 
Abstract— Edge-illumination scheme was tried for a next 

generation solar cell that can optimize the light-absorption and 

the photocarrier-collection independently, with multi- 

semiconductor stripes in which photons and photocarriers move 

in orthogonal directions. In that scheme, the conversion 

efficiency remain high for the small active-layer thickness for 

which the conventional illumination scheme inevitably gives low 

conversion efficiency, suggesting the superiority of our new 

solar cell that operates under orthogonal photon-photocarrier- 

propagation mode. 

 

Index Terms—high efficiency, multi-stripe, solar cell.  

 

I. INTRODUCTION 

  We have an ultimate, i.e., safe and high-power, 

nuclear-fusion power-plant, the Sun, whose power being 

conveyed to Earth by solar photons through the space 

(vacuum, to a good approximation), the only problem is that 

the conversion efficiency of a detector, i.e., a solar cell [1],[2], 

is not high enough. Many kinds of solar cells, including those 

based on quantum dots [3], or on organic materials with novel 

configuration [4] have been studied, and achieving a high 

conversion efficiency even with using organic materials has 

been a focus of attention [5],[6]. So far it is difficult for 

conventional solar cells, including tandem solar cells [7], to 

convert the full spectrum of light into electricity. In this paper, 

we use edge-illumination scheme to investigate the feasibility 

of multi-striped orthogonal photon-photocarrier-propagation 

solar cells in which photons propagate in the direction 

orthogonal to that of photocarriers.   

II.  EXPERIMENTAL RESULTS AND DISCUSSION 

In conventional solar cells, the sunlight impinge the solar-cell 

plane perpendicularly, and the photon’s propagation direction 

is perpendicular to pn junction, while the photocarrier’s 

diffusion/drift direction is along the largest gradient of the 

electric potential, i.e., vertical to the pn junction plane, and  
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Fig. 1 Cross-section of a conventional solar cell (left) and top view of 

orthogonal photon-photocarrier-propagation solar cell (right) 
 

thus is parallel to the direction of photon propagation as 

shown in Fig. 1(left). In general, on the other hand, we need a 

thick layer to efficiently absorb the solar light, but at the same 

time we have to make the layer thin enough to fully collect 

photo-generated carriers that has only finite life time. Thus, 

the conventional solar cells are outcome of compromise 

caused by a severe trade-off in determining the semiconductor 

layer thickness between light absorption and photocarrier 

collection, as shown by thick solid line in Fig. 2.    
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Fig. 2 Conversion Efficiency vs. active-layer thickness (electrode 

spacing).   The inset depicts the multi-striped orthogonal 

photon-photocarrier- propagation solar cell 

  

 Situations would dramatically be changed in the 

orthogonal photon-photocarrier-propagation solar cell, 

because the photons propagate in the direction, not parallel, 

but vertical to that of the photocarriers’. One example of our 

new solar cells is based on the spiral heterostructure that is 

made by rolling up a pn junction sandwiched between anode 

electrode and cathode electrodes on a flexible substrate [8] 

resulting in a disk-like shape as shown in Fig. 1 (right) . In this 

solar cell, sunlight is to be shed vertically to the disk. As for 

the photocarriers, because the pn junction is spirally prepared, 

the photogenerated electrons and holes, move in the radial 

direction. The direction of photon propagation is parallel to 

the axis of the disk (z-direction) and is orthogonal to 

Edge-Illumination Scheme for Multi-striped 

Orthogonal Photon-Photocarrier-Propagation Solar 

Cells 
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photo-carriers’ drift direction. Thanks to the orthogonality, 

we can fully enjoy the freedom to make the disk thick enough 

to absorb all the photons keeping the distance between the p/n 

electrode distance (active-layer thickness) thin enough to 

allow most of photocarriers to reach out to the contact metals 

[8],[9]. Moreover, we can utilize the degree of freedom along 

z direction. By growing multiple semiconductor stripes, as 

shown in the inset of Fig. 2, we can prepare k semiconductor 

stripes, neighboring to each other, with different band gaps on 

the flexible substrate in such an order that the incoming solar 

photons first encounter the widest gap semiconductor, then 

narrower gap semiconductors, and the narrowest at bottom 

[10]. 

In the case of conventional solar cells, it is the best, but 

difficult, to obtain active-layer materials in which absorption 

coefficient a and mobility  are both large enough. In our 

solar cell, we can virtually forget about the issue about a by 

setting the disk thickness in Fig. 1 (right), or by setting stripe 

width Wj in the inset of Fig. 2 as 
 

         Wj  >   1/ a j ,                           (1) 

 

where aj is the absorption coefficient of the j-th 

semiconductor stripe. The best mode is to set Wj to be 3~6 

times 1/aj. By just concentrating on utilizing high mobility 

materials, we would be able to have, in our solar cell, the 

efficiency shown by dash-dot line in Fig. 2. 

For proof-of-the-concept experiment, we have made a 

structure shown in Fig. 3. Two-hundred-micron thick PEN 

with 200-nm-thick IZO electrode is used as a substrate, on top 

of which 50-nm-thick PEDOT:PSS film and P3HT:PCBM 

layer with thickness d = 50~130 nm are spin-coated. Then Al 

electrode is prepared finally by vacuum evaporation. The 

sample is illuminated using a green laser having 

wavelength= 532 nm and power of ~1mW.  As shown in 

Fig. 3, the light is shed from two different directions: one is a 

conventional illumination configuration in which photons 

impinge on the structure perpendicularly with respect to the 

layers (Fig. 3, left) and the other is the edge illumination 

configuration for which a modified system of microscopic 

photoluminescence (PL) is used with its focus on the edge 

surface. In Fig. 3 are shown cross section of the solar-cell 

structure (middle, top) and the laser spot (middle, bottom). 

The laser spot size, there, is roughly 30 m in diameter with 

tailing skirt-part included but its strongest spot size is much 

sharper, a couple of microns in width. Because of this inherent 

spot size and the Gaussian beam waist located at the edge with 

focal depth of ~1um, we can regard that well-focused 

excitation photons are made go along the layer of 

P3HT:PCBM in the sample starting from the edge. Although 

the current is not so large, we do observe the photovoltaic 

characteristics under the edge illumination as shown in Fig. 4.  

Both in the dark and under the edge illumination, we have 

measured the I-V curve of the cell, and obtained open circuit 

voltages Voc’s and short circuit current Isc’s. For comparison, 

we also have measured I-V characteristics using the same 

solar cell sample under the conventional illumination 

configuration. 

Based on those measurements, we plot the product Isc・Voc 

(: conversion efficiency) as function of the active-layer 

thickness d in Fig. 5. Blank circles are for the data obtained 

under conventional illumination and solid circles under the 

edge illumination. We can see In Fig. 5 that Isc・Voc start to 

decrease for d >100 nm and is good agreement with the 

d-dependence of the conversion efficiency observed using the 

same active-layer materials [6]. In Fig. 5, dashed is a line of 

log d, and the solid line is corresponding to the dependence of 

exp(-d/L) with L=30nm, which is in good accord with what 

was obtained before when considering the active-layer 

preparation [5,6]. The blank circles are, to a fairly good 

approximation, on the dashed line for nmd 100 , and the solid 

circles are well on the solid line for nmd 100 , which is 

understood, using Fig. 2  (especially the encircled region), 

that the trade-off  (denoted by the thick solid line) seen in the 

conventional illumination regime is lifted off in the edge 

illumination configuration, or in the orthogonal 

photon-photocarrier-propagation mode, as depicted by the 
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Fig. 3 Photon injection scheme: a) conventional case and b) edge    

injection. 
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Fig. 4   I-V characteristics of the cell in the dark and edge- 

            illumination configuration. 
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Fig. 5 Conversion Efficiency vs. active-layer thickness (or electrode 

 spacing) d, under two different illumination configuration. 
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thick dashed line in Fig. 2. In this mode, the conversion 

efficiency, remain high for a small d region for which the 

conventional illumination (or parallel photon-photocarrier- 

propagation mode) gives low  because of the loss of 

photons due to their penetration through the thin active-layers. 

This result manifests the superiority of the orthogonal 

photon-photcarrier propagation solar-cell anticipated in Fig. 2. 

In the orthogonal photon-photcarrier propagation solar-cell, 

we can concentrate on utilizing high mobility materials 

getting free from the constraint on a by making the 

disk-thickness several times 1/a, and would fully enjoy high 

conversion efficiency depicted by dash-dot line in Fig. 2. The 

orthogonal photon-photcarrier propagation solar-cell would 

be able to be extended to a planar type [11] and are of 

potential interest for the next generation solar cells with a high 

efficiency. 

III. CONCLUSIONS 

We have investigated a multi-striped orthogonal 

photon-photocarrier propagation solar cell. Photons being 

impinging on the disk generating photo-carriers moving in the 

radial direction, the photons propagate in the direction 

orthogonal to that of the photo-carriers’. Because of the 

orthogonality, the new solar cell can optimize the absorption 

of light and the photo-carrier collection independently. By 

exploiting the degree of freedom along the axis perpendicular 

to the disk, we can convert the full solar spectrum into 

electricity resulting in high conversion efficiency. The 

connected solar cells of ours can convert virtually the whole 

spectrum of black body radiation into the electricity with a 

single output voltage, being a candidate for next generation 

solar cells with high energy conversion efficiency. 
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