

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-4, August 2016

 34 www.erpublication.org



Abstract— The need of wireless transfer of data from a

microcontroller to an Android device or a desktop PC can be

fulfilled by the use of a Bluetooth or Wi-Fi module. A token or a

few bytes of data can be transferred using any Bluetooth

module. However, a problem arises when the size of data

increases to a few megabytes. A low cost Bluetooth module does

not buttress the high data rate and switching to an efficient and

faster Bluetooth module is an expensive alternative. A cost

effective solution to this is using an easily available Wi-Fi

module which is comparatively cheaper.

This paper describes some important steps for setting up a

Wi-Fi module, sending large amount of data using the Wi-Fi

module, and comparing the speeds of the same module with

different microcontrollers.

Index Terms— Arduino Mega, Arduino Uno, ESP8266,

Teensy 3.2, Data Integrity, Baud Rate.

I. INTRODUCTION

Data transfer from a microcontroller to an Android device or

a desktop PC is easy when a newbie in the field of electronics

has to send a token or a byte of data. The available wireless

communication modules like Bluetooth and Wi-Fi make it

possible to transfer data in minimal time. A newbie can setup

a Bluetooth module in a few minutes by writing a simple

sketch, and can send data over a Bluetooth module. Setting

up a Wi-Fi module is cumbersome as compared to a

Bluetooth module and it requires profound knowledge of

embedded systems and networking.

When the amount of data to be transferred on an Android or

desktop PC from an external SD card increases, the transfer

speed becomes a challenge when it comes to a wireless

transfer. Bluetooth speed deteriorates when the module is

used with a high baud rate. The possible solutions can be

using a high performance Bluetooth module or using Wi-Fi

module. The high performance Bluetooth module has a large

buffer size and a capability to handle high data rates.

However, it is expensive as compared to a Wi-Fi module

which is sufficient to satisfy the data transfer purpose given

the overhead of setting it up.

To send a large amount of data from the sd card may take

several minutes. To lessen the transfer time is also one of the

challenges. A few tests have been performed and the data

transfer is made fast and easy using one of the cheapest

components available in the market.

Gaurav Khadse, Electronics and Telecommunication, University of

Pune, Pune, India, 9860076725.

Ninad Adhav, Networking and Telecommunications, University of

Texas at Dallas, Richardson, TX, 9970113169.

II. LITERATURE SURVEY

The transfer rate would depend upon a lot of factors. Out of

all these, the two main factors would be:

1. How fast the sd card is being read and

2. How fast and efficiently the data is being handled by

the Bluetooth or Wi-Fi module.

The second factor has been studied thoroughly and numerous

experiments were performed on different Bluetooth and

Wi-Fi modules to have a practically achievable transfer rate.

This was reinforced by 100% data integrity.

The Bluetooth modules that had been taken into

consideration were classic Bluetooth modules like HC05,

RN41, RN42, and BT33. HC05, RN41, and RN42 don’t have

enough buffer size to handle large amount of data

continuously. Hence the flow control was implemented using

the RTS and CTS pins provided by these Bluetooth modules.

But, after implementing the flow control, the transfer rate

started to deteriorate drastically. These Bluetooth modules

took approximately 1 Minute to send 1Mb of data. The BT33

seemed more efficient than the rest of the Bluetooth modules

and therefore, the BT33 module, after having a proper

implementation of flow control, was able to achieve higher

transfer rate than the HC05, RN41, and RN42. But BT33 was

not cost-effective. Also, only one instance of the Bluetooth

module could be connected at a time with an Android device

or with a Desktop PC. This could be overcome using a Wi-Fi

module.

Therefore, Wi-Fi module was chosen and research began

with finding a suitable Wi-Fi module which is reliable as well

as cost-effective. After going through several Wi-Fi modules,

the Espressif ESP8266-12e and Huzzah CC3000 were

shortlisted.

After a lot of extensive comparison based on the following

performance, compatibility, supporting forums, and cost of

the modules, we selected the ESP8266-12e as the module for

our tests.

ESP8266-2e has a programmable microcontroller but we

preferred to test it with an external controller as we had other

time-constraining tasks to perform using an external

controller.

The following table outlines the basic structure of CC3000

and ESP 8266.

Comparative study of data transfers using Wi-Fi

modules

Gaurav Khadse, Ninad Adhav

Comparative Study of Data Transfers Using Wi-Fi Modules

 35 www.erpublication.org

Wi-Fi

chip/module
CC3000 ESP8266

Wi-Fi Standards 802.11 b/g 802.11 b/g/n

Packets TCP and UDP TCP and UDP

Modes
Client and

Server

Client and

Server

Concurrent

Sockets
4 5

Access Point

Modes
No P2P, Soft-AP

Size
26.22 x 40.45 x

2.95mm
24 x 16mm

Interface SPI TTL Serial

Encryption
Up to

WPA2-PSK

Up to

WPA2-PSK

Sleep Current - <10 uA

Transmit Current 350mA 215 mA (typ.)

Receive Current - ~60 mA

Digital Pins 0 9

Analog Pins 0 1

Other Pins 0
0 (E variant adds

more)

Programmable

Microcontroller
No Yes

Cost (US Dollars) $34.95 $3.37 – 6.95

Table 1. Comparison of Wi-Fi modules

III. PROPOSED ARCHITECTURE

The esp8266-12e was tested with Arduino UNO and Arduino

Mega in server mode. It was also tested with Teensy 3.2 in

server as well as client mode. The mode is said to be a server

mode when the esp8266-12e acts as a server and an external

mobile or a desktop PC acts as a client. The mode is said to be

a client mode when the esp8266-12e acts as a client. In this

mode, the python server has to be created on a desktop PC.

General Configurations:
Wi-Fi Module Name: ESP8266-12e

Firmware used:
esp_iot_sdk_1.5.4 (New Firmware)

esp_iot_sdk_0.9.4 (Old Firmware)

Software Used:
Arduino IDE , Teensyduino, Python IDLE.

Hardware used:
Arduino Uno, Arduino Mega, Teensy 3.2

Connection:

Fig 1. Connecting ESP8266 with Arduino UNO

Fig 2. Connecting ESP8266 with Arduino Mega

Fig 3. Connecting ESP8266 with Teensy 3.2

Common Steps for Data Transfer and Data Logging :

 Power up the device and upload the code.

 When checking data transfer on Android Phone –

 Start Admin Hands App  Hosts

 Create a new connection by selecting “+”

sign at the bottom left.

 Fill in the Fields with the IP Address and

Port Number of the Wi-Fi module and

select Telnet as a medium of transfer.

 When a code is complied, connect the phone’s Wi-Fi

to the Esp8266 SSID.

 Wait for 20 Seconds from the time of compilation

(Delay provided manually in program) and then

select the new connection which has just been

created by you on the App. If everything is correct

you shall see a Blank Black screen on the App.

 If connection is not established properly you will see

the following message on the same black screen.

“Connecting to “IP Address”....”

 After the successful connection and after 10 seconds

you will see the data transfer.

 When checking data transfer on desktop PC/laptop :

 Open Putty

 Select Logging (Under Session on the left)

 All Session Output Browse the folder

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-4, August 2016

 36 www.erpublication.org

where you want the Logged File to be

saved.

 Click Session  Fill in IP Address and Port

Number of the module to be connected to

 Connection Type – Telnet

 Under the Saved Sessions bar give a name

and click on Save to save all the above

settings so as to use them in the future

again instead of doing all the above steps

every time.

 Once code is complied, start the Putty

Session and after 20 Seconds you should

see the Data Transfer. And after entire file

is transferred, close putty and browse to the

file where data is logged to get the file. File

will not be created until Putty is closed.

Following AT command set was used in the tests:

AT - Test module response

AT+GMR - Module Information

AT+IPR=2000000 - Change the baud rate of the module

– (Old Firmware)

 AT+UART_DEF=2000000,8,1,0,1 - Change the baud

rate of module – (New Firmware)

AT+CWMODE=2 - Change mode of the module 1-3

(1-client,2-Server,3- Server+client)

AT+CIPMUX=1 - Accept multiple connections

(0-Single , 1- Multiple)

AT+CIPSERVER=1,80 - Set module as the server

AT+CIPAP="192.168.4.1" - Set the IP Address of the

module in Server mode

AT+CIPSTA="192.168.5.1" - Set IP address of

module in client mode

AT+CWSAP="DRILL","password",3,2 - Set the

SSID and PW of the module

AT+CIPSTAMAC? - Get current MAC address of the

module in station mode

AT+CIPAPMAC? - Get current MAC Address of the

module in SoftAP mode.

AT+CIPMODE=1 – Put module in Transparent

Transmission Mode.

AT+CIPSTART=1,"TCP","ip address","port"
(when AT+CIPMUX=1) //doesn’t work on new f/w (This

command is for the client mode)

AT+CIPSTART="TCP","ip address","port" (when

AT+CIPMUX=0)

AT+CIFSR - Get Ip address of module as the client

AT+CIPSEND=0,2048 - Send data packets

IV. EXPERIMENTS

1. ESP8266 with Arduino Uno (Server Mode)

The ESP8266 was first tested with Arduino UNO. The

hardware-serial was used as it has dedicated Tx, Rx pins

which results in faster communication than the

software-serial.

The Following sketch was uploaded in Arduino UNO:

#include <SPI.h>

#include <SD.h>

#define TIMEOUT 5000 // mS

#define LED 13

char buf[512];

const int chipSelect = 10;

File myFile;

char invar = 0;

char invar1 = 0;

//---

void setup()

{

pinMode(LED,OUTPUT);

Serial.begin(4000000);

/*--------------SD CARD INIT----------------------*/

//Serial.print("Initializing SD card...");

pinMode(SS, OUTPUT);

if (!SD.begin(chipSelect)) {

 return;

 }

SendCommand("AT", "Ready");

SendCommand("AT+CWMODE=2","OK");

Serial.println("AT+CWSAP=\"TFM_DRILL\",\"password\",

3,2");

//SendCommand("AT+CIFSR", "OK");

SendCommand("AT+CIPMUX=1","OK");

SendCommand("AT+CIPSERVER=1,80","OK");

/*----------------FIND IMPORT STRING--------------------*/

String IncomingString="";

boolean StringReady = false;

delay(25000);

StringReady= true;

if (StringReady){

 /*----------------READ FILE IF FOUND IMPORT

STRING--------------------*/

 myFile = SD.open("DATA50.TXT");

 if (myFile)

 {

 while (myFile.available())

 {

 Serial.println("AT+CIPSEND=0,512");

 while(1){

 if(Serial.find(">")){

 invar = 1;

 }

 if(invar == 1) break;

 }

 myFile.read(buf,512);

 Serial.write(buf,512);

 while(1){

 if(Serial.find("OK")){

 invar1 = 1;

 }

 if(invar1 == 1)

 break;

 }

 invar = 0;

 invar1 = 0;

 }

 myFile.close();

 }

 else

 {

 Serial.println("error opening test.txt");

 }

 }

}

/*------------------------LOOP--------------------*/

void loop(){

}

Comparative Study of Data Transfers Using Wi-Fi Modules

 37 www.erpublication.org

/*-------------------FUNCTIONS-------------------------*/

boolean SendCommand(String cmd, String ack){

 Serial.println(cmd); // Send "AT+" command to module

 if (!echoFind(ack)) // timed out waiting for ack string

 return true; // ack blank or ack found

}

boolean echoFind(String keyword){

byte current_char = 0;

byte keyword_length = keyword.length();

long deadline = millis() + TIMEOUT;

while(millis() < deadline){

 if (Serial.available()){

 char ch = Serial.read();

 //Serial.write(ch);

 if (ch == keyword[current_char])

 if (++current_char == keyword_length){

 //Serial.println();

 return true;

 }

 }

 }

return false; // Timed out

}

/*---------------------END OF FUNCTIONS------------------*/

For this setup, 1Mb file took 35 Seconds to transfer. The

limitation of this setup was the memory size. Due to this we

could only send buffered data of maximum 512 characters.

This caused added cycles of the loop in the program which

increased the processing time which ultimately resulted in

fairly slow transfer speed.

2. ESP8266 with Arduino Mega (Server Mode):

To solve the above limitation in the case of Arduino Uno, we

switched to Arduino Mega which has more memory than the

Uno. The Mega could handle large buffer size and so could

increase the transfer speed.

We made some changes in the code which was used in the

Arduino UNO. The buffer size which was 512 bytes in the

Arduino UNO was made 2048 bytes in the Arduino Mega.

The Mega, could handle large amount of data in a single go.

Also, the Serial baud rate was increased to 5000000 from

4000000.

For this setup, 1Mb file took 15 Seconds to transfer. Transfer

time is significantly improved as now we are sending data in

block sizes of 2048 which is the maximum sending size for

the ESP8266.

3. ESP8266 with Teensy 3.2 (Server Mode)

Finally we tested the ESP8266 with the Teesny 3.2 which is

way faster than the Arduino Uno and Mega. Also, it has more

memory than the other two.

In this setup, 1Mb data took 5 Seconds to transfer. This was

the fastest time achieved amongst the 3 methods. We are

sending data at the maximum baud rate of 5 Million and

maximum buffer size of 2048.

4. ESP8266 with Teensy (Client Mode- Python

Server)

The connection for this setup is same as the server mode. The

only difference here is that we configure the ESP module in

client mode and send data through the Transparent

Transmission mode of the module. For the server we use a

script which is written in Python.

Python Server Sketch:

import socket # Import socket module

import time

s = socket.socket() # Create a socket object

host = '192.168.0.119' # Get local machine name

port = 80 # Reserve a port for your service.

s.bind((host, port)) # Bind to the port

f = open('Got_File.txt','wb')

s.listen(5) # Now wait for client connection.

while True:

 c, addr = s.accept() # Establish connection with client.

 print ('Got connection from', addr)

 start_time = time.time()

 print ("Receiving Data from Client...")

 l = c.recv(1024)

 while (l):

 print ("Receiving...")

 f.write(l)

 #print (l)

 l = c.recv(1024)

 f.close()

 #s.shutdown(socket.SHUT_WR)

 print ("Done Receiving")

 print("--- %s seconds ---" % (time.time() - start_time))

 c.send("Thank you for connecting")

 c.close()

/********** End of Code*********************/

For this setup, 1Mb file took 3 minutes to transfer. Work is

still underway on this setup. We need to reduce the transfer

times as the current results are not ideal for us. So we are still

sticking with the results we got using the “ESP with teensy –

Server Mode”.

V. RESULTS

Following are the final and best results that we have achieved

from all scenarios and setups.

Arduino Uno and ESP:

Server Mode:

Baud Rate: 4 Million Buffer Size: 512

File Size: 1Mb Time: 35 Seconds

File Size: 8Mb Time: 2 Minutes 30

Seconds

Data Integrity: 100%

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-4, August 2016

 38 www.erpublication.org

Arduino Mega and ESP:

Server Mode:

Baud Rate: 5 Million Buffer Size: 2048

File Size: 1Mb Time: 15 Seconds

File Size: 8Mb Time: 2 Minutes

Data Integrity: 100%

Teensy and ESP:

Server Mode:

Baud Rate: 5 Million Buffer Size: 2048

File Size: 1Mb Time: 4 Seconds

File Size: 8Mb Time: 35 Seconds

Data Integrity: 100%

Teensy and ESP:

Client Mode: Python Server: Transparent Transmission

Mode

Baud Rate: 2 Million Buffer Size: No

Buffer

File Size: 1Mb Time: 3 Minutes

File Size: 8Mb Time: Not Tested

Data Integrity: 100%

VI. CONCLUSION

Performing several experiments on ESP8266 and various

Microcontrollers, we came to a conclusion that the large

amount of data can be transferred using the ESP8266 Wi-Fi

module along with the teensy 3.2 in a small amount of time.

Thus, the need of the wireless transfer of data from an

external sd card to the Android device or the desktop PC can

be fulfilled by the use of Wi-Fi module as a communication

medium.

REFERENCES

[1] Yoonsun, “Wearable Devices,” Joono OpenStory, 2014, pp. 30-96.
[2] Harold Davis, “Absolute Beginner's Guide to Wi-Fi Wireless

Networking,” Que Publishing, 2004, pp. 51-203

[3] Jim Geier, “Designing and Deploying 802.11n Wireless Networks
(Networking Technology),” Kindle Edition, pp. 87-150.

[4] Wesley J Chun, “Core Python Programming (2nd Edition),” Kindle

Edition, pp. 1-196.
[5] Lubanovic Bill, “Introducing Python,” Shroff Publishers, pp. 107-180.

[6] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen, “A Comparative

Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,”
Industrial Electronics Society, 2007. IECON 2007. 33rd Annual

Conference of the IEEE, 5-8 Nov. 2007, pp. 46-5

[7] Kok-Kiong Yap, Te-Yuan Huang, Masayoshi Kobayashi, Yiannis
Yiakoumis, Nick McKeown, Sachin Katti, and Guru Parulkar,

“Making use of all the networks around us: a case study in android,”

CellNet '12 Proceedings of the 2012 ACM SIGCOMM workshop on

Cellular networks: operations, challenges, and future design, 2012, pp.

19-24
[8] Notes on the inexpensive ESP8266 WiFi module. Available:

http://www.labradoc.com/i/follower/p/notes-esp8266

[9] The easy way to build Internet of Things. Available:
http://iot-playground.com/

[10] Connecting the ESP8266 to an Arduino. Available:

http://www.teomaragakis.com/hardware/electronics/how-to-connect-a
n-esp8266-to-an-arduino-uno/

[11] Data Integrity, definition and introduction. Available:

https://docs.oracle.com/cd/A57673_01/DOC/server/doc/SCN73/ch7.h
tm

Gaurav Khadse, received his B.E. in Electronics and

Telecommunications from University of Pune.

Specialized in Embedded Systems –wearable devices
and computing. Played a key role in developing

TFM-drill, a wearable device for tracking a football

player, a device developed under thefootballmind.com.
Working since July 2014 as an Embedded Developer at Connasys.com. pvt.

ltd, Pune, India.

Ninad Adhav, received his B.E. in Electronics and

Telecommunications from University of Pune. Worked

in the field of Networking and Wearable computing at
thefootballmind.com. Specialized in Networking and

Telecommunications and is currently pursuing Master of
Science at University of Texas at Dallas.

