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Abstract— Negative selection algorithms (NSA) are methods 

inspired by the T cells maturating process. They all comprise of 

two phases: generation of detectors that match none of the self 

samples, and classification of monitored elements as self or 

nonself using these detectors. However, the detector sets 

generated may be redundant. In this paper, we propose a new 

negative selection algorithm to generate a complete and 

non-redundant detector sets that use an extension of r-chunk 

matching rule. This allows to reduces detectors storage and 

classification time. Experimental results on four datasets show 

the effective of proposed algorithm. 

 

Index Terms—Immune system, negative selection, r-chunk, 

detectors generation.  

 

I. INTRODUCTION 

  In the field of Artificial Immune Systems (AIS), negative 

selection algorithm is class of techniques inspired by the T 

cells maturating process that happens in thymus. The 

discriminating mechanism between self (signal of a healthy 

cell) and nonself (signal of an unhealthy cell) of T cells are 

modeled by NSAs. T cells are first generated randomly and in 

a large number, in the hope that every pathogen that might 

infect the host could be detected by at least some of these 

cells. However, the host must ensure that no cell generated 

would turn against itself (autoimmune reactions). Hence, 

newborn T cells must undergo the process of selection to 

ensure that they are able to recognize nonself. This process 

might be conducted by a negative selection: if a T cell detects 

any self protein, it is discarded; otherwise, it survives [4]. 

Given a collection of self patterns S, a typical NSA 

comprises of two phases: detector generation and detection 

[2], [12]. In the detector generation phase (Fig. 1.a), the 

detector candidates are generated randomly and censored by 

matching them against given self samples taken from the set 

S. The candidates that match any element of S are eliminated 

and the rest are kept and stored in the set D. In the detection 

phase (Fig. 1.b), the collection of detectors are used to 

distinguish self (system components) from nonself (outlier 

like viruses, worms, etc.). If an incoming data instance 

matches any detector, it is claimed as nonself, and it is 

claimed as self otherwise.  

From a machine learning perspective, negative selection is 

usually described as an anomaly detection technique. Since its 

introduction, NSA has been a source of inspiration for many 

computing applications, especially for intrusion detection [4], 

[14], computer virus detection [9], monitoring UNIX 

processes [8], spam detection [18], modeling of 

immunological processes such as HIV infection modeling 

[15].  
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Fig. 1. Outline of a typical negative selection algorithm [13]. 

 

For binary-based AIS (i.e. the representations for cells, 

detectors are binary strings), r-chunk and r-contiguous bits 

(rcb) are two common matching rules used for the 

construction of detector set (and also for the detection phase). 

An r-chunk matching rule can be seen as a generalization of 

the rcb matching rule. To date, there have been some 

computing models of binary detectors that could generate a 

complete and non-redundant detector set, called perfect 

detector set, a set of minimum detectors with the same 

detection ability in comparing to that of all possible detectors, 

such as those based on prefix trees [5], [16], or automata [6]. 

In these models, detectors are represented as a whole structure 

(tree or automata) rather than a set of individual strings. While 

they provide a more compact representation of the detector 

sets for AIS and therefore achieve a better detection time 

complexity, these models of binary-based AIS are hard to 

deploy in distributed environments. Naturally, one desirable 

property of NSA is its ability to be implemented in a 

distributed manner - each detector might detect different kind 

of nonself, this is desirable for many applications such as in 

computer security systems. Therefore, the focus of this paper 

is on binary-based NSAs that employ a discrete set of 

detectors (strings) so that they can be implemented in 

distributed environments. We can, for example, randomly 

divide the discrete set of detectors into some subsets, each one 

for a nodes in in distributed environments.  

With respect to binary-based AIS using discrete detector 

set, to the best of our knowledge, the only algorithm for 

generating a perfect and discrete set of r-chunk (rcb-based) 

detectors was proposed by T. Stibor in [21] (by S. T. Wierzchoń 

in ([20]), which has frequently been cited, compared, and 

applied in the literature with 44 (47) citations on Google 

Scholar. The main contribution of our paper is to design new 

deterministic algorithm to generate a perfect and discrete set 

of rcbvl-based detectors, which is equitable to a full set of 

r-chunk-based detectors in term of anomaly detection. 
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Moreover, compact string-based detectors set can achieve 

better memory and time complexities compared to 

conventional algorithms.  

The rest of the paper is organized as follows. In the next 

section, we first present some basic terms and definitions. 

After the introduction of strings, two common matching rules 

for generating detector set, r-chunk and rcb are given. Then 

we introduce an r-contiguous bit matching rule with variable 

length (rcbvl) detectors. This new type of detector set is more 

compact, in bits, than one bases on original r-chunk and rcb. 

Prefix trees are introduced as temporary data structures for 

generation. Section 3 details our new NSA that can generate 

perfect detector sets base on rcbvl. Section 4 briefly describes 

our experiments in generating perfect detector sets. Section 5 

concludes the paper and discuss some possible future works..  

II. BASIC TERMS AND DEFINITIONS 

In NSAs, an essential component is the matching rule 

which determines the similarity between detectors and self 

samples (in the detector generation phase) and coming data 

instances (in the detection phase). Obviously, the matching 

rule is dependent on detector representation. In this paper, 

both self and nonself cells are represented as binary strings of 

fixed length. This representation is the most simple and 

popular representation for detectors and data in AIS, and 

other representations (such as real valued) could be reduced 

to binary [10], [13]. 

A. Strings 

An alphabet Σ is nonempty and finite set of symbols. A 

string s ∈ Σ∗ is a sequence of symbols from Σ, and its length is 

denoted by |s|. A string is called empty string if its length 

equals 0. Given an index i ∈ {1,...,|s|}, then s[i] is the symbol 

at position i in s. Given two indices i and j, whenever j ≥ i, 

then s[i...j] is the substring of s with length j− i+1 that starts at 

position i and if j < i, then s[i...j] is the empty string. A string 

s’ is a prefix of s if s’ = s[1...j], 1 ≤ j ≤ |s|.  

Given a string s ∈ Σ
ℓ
, a non-empty string d, and an index i ∈ 

{1,..., ℓ − r + 1}, we say that d occurs in s at position i if s[i...i 

+ |d| − 1] = d. Moreover, concatenation of two strings s and s’ 

is s + s’.  

Although our approaches can be implemented on any finite 

alphabet, but strings used in all examples are binary, Σ = 

{0,1}, just for easy understanding. 

B. R-chunk and rcb matching rules 

For binary-based AIS, the rcb and r-chunk are among the 

most common matching rules. Given a positive integer r, a set 

S of self strings of length ℓ. A detector under rcb matching 

rule is a string of length ℓ that does not match any s ∈ S. It is 

said to match another string, of the same length, if they have r 

consecutive matching bits in the corresponding positions. Rcb 

was introduced and used in many AIS projects [7], [11], [17]. 

An r-chunk detector is a tuple of a string of r bits and its 

starting position with the string that does not match any s ∈ S. 

An r-chunk detector (d,i) is said to match a string s if d is a 

prefix of s[i..|s|]. An r-chunk matching rule is considered as a 

simplification of the rcb matching rule [17]. This type of 

detector helps AIS to achieve better results on data where 

adjacent regions of the input data sequence are not necessarily 

semantically correlated, such as in network data packets [3]. It 

is noted that an r-contiguous detector [4] can be decomposed 

into ℓ − r + 1 overlapping r-chunk detectors. 

Example 1: Let ℓ = 6, r = 3. Given a set of five self strings S 

= {s1 = 010101, s2 = 111010, s3 = 101101, s4 = 100011, s5 = 

010111}. The set of all r-chunk detectors is {(000,1), (001,1), 

(011,1), (110,1), (001,2), (010,2), (100,2), (111,2), (000,3), 

(100,3), (111,3), (000,4), (001,4), (100,4), (110,4)}. The set 

of all detectors under rcb matching rule is {001000, 001001, 

011110, 110000, 110001}. 

C. Rcbvl matching rule 

Given a positive integer r, a set S of self strings of length ℓ. 

A triple (d,i,j) of a string d ∈ Σ k , 1 ≤ k ≤ ℓ, an integer i ∈ 
{1,...,ℓ−r+1} and an integer j ∈ {i,...,ℓ−r+1} is called a 

negative detector under rcbvl matching rule if d does not 

occur in any s, s ∈ S. In another words, (d,i,j) is an rcbvl 

detector if there exist j−i+1 r-chunk detectors (d 1 ,i),..., (d 

j−i+1, j) that d k , d k+1 are two (r − 1)-bit overlapping strings, 

k = 1,...,j − i.  

Example 2: Given ℓ, r and the set S of self strings as in 

Example 1. Triple (0001,1,2) is an rcbvl detector because 

there exist two 3-chunk detectors (000,1), (001,2) that 000 

and 001 are two 2-bit overlapping strings. A perfect detector 

set D under rcbvl matching rule contains 5 variable length 

detectors {(0001,1,2), (00100,1,4), (100,4,4), (011110,1,4), 

(11000,1,3)}. It is a minimum detectors set (23 bits) that 

covers all detector space of r-chunk detectors set in Example 

1 (45 bits).  

D. Prefix trees 

A prefix tree T is a rooted directed tree with edge labels 

from Σ where for all σ ∈ Σ, every node has at most one 

outgoing edge labeled with σ. For a string s, we write s ∈ T if 

there is a path from the root of T to a leaf such that s is the 

concatenation of the labels on this path. This tree structure is 

important for generating rcbvl detectors set.  

Example 3: Given ℓ, r and the set of self strings S as in 

Example 1, four prefix trees presenting all binary 3-chunk 

detectors are in Fig. 2.  

 

 
Fig.2. Trees represents 3-chunk detectors set in Example 1. 

Tree Ti presents 3-chunk detectors (d,i), i = 1,...,4. 

III. NEW NEGATIVE SELECTION ALGORITHM 

Given a non-empty set S of self strings of length ℓ, and an 

integer r ∈ {1,...,ℓ − r + 1}, this section presents a new NSA 

bases on rcbvl matching rule. 

A. Detectors set generation under rcbvl matching rule 

Algorithm 1 Algorithm to generate perfect rcbvl detector 

set.  

1: procedure G ENERATION D ETECTORS (S, ℓ, r, D) 

2: for i = 1,...,ℓ − r + 1 do 

3:  Create an empty prefix tree Ti 
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4: end for 

5: for all s ∈ S do 

6:  for i = 1,...,ℓ − r + 1 do 

7:   insert every s[i...i + r − 1] into Ti 

8:  end for 

9: end for 

10: for i = 1,...,ℓ − r + 1 do 

11:  for all nonleaf node n ∈ Ti and all σ ∈ Σ do 

12:   if no edge with label σ starts at n then 

13:    create a new leaf n’ and an edge (n,n’) 

labeled with σ. 

14:   end if 

15:  end for 

16:  delete every node n ∈ Ti from which none of the 

newly created leaves is reachable. 

17: end for 

18: D1 = ∅ 

19: D = {(s,1,1)|s ∈ T1} 

20: for i = 2,...,ℓ − r + 1 do 

21: D2 = ∅ 

22: for all (s,k,j) ∈ D do 

23:  if there exists a s’ ∈ Ti where s[i−k+1...|s|] 

is prefix of it then 

24: D2 = D2 {(s+s’[|s|−j+k...|s’|],k,i)} 

25: delete every node n ∈ Ti from which only 

nodes in the s’ is reachable 

26: for all s’ ∈ Ti where s[i − k + 1...|s|] is 

prefix of it do 

27:  if |s| − i + k < r then 

28:   D2 = D2{(s[|s|] + s’,i − 1,i)} 

29:  else 

30:   D2 = D2{(s’,i,i)} 

31:  end if 

32: delete every node n ∈ Ti from which 

only nodes in the s’ is reachable 

33: end for 

34: else 

35:  D1 = D1{(s,k,j)} 

36: end if 

37: end for 

38:  for all s’∈ Ti do 

39:   D2 = D2{(s’,i,i)} 

40:  end for 

41: D = D2 

42: end for 

43: D = D  D1 

44: end procedure 

Algorithm 1 summarizes the first phase of new NSA. Some 

prefix trees are first used to generate perfect detectors set 

from S and then this set is used to distinguish if a new sample 

as self or nonself. In the algorithm, the process of generating 

We first construct for every position i ∈ {1,...,ℓ − r + 1} a 

prefix tree Ti . Each prefix tree Ti can be constructed as 

follows: start with an empty prefix tree and insert every s[i...i 

+ r − 1], s ∈ S, into it (lines 5-9). Next, for every non-leaf node 

n and every σ ∈ Σ where no edge with label σ starts at n, create 

a new leaf n’ and an edge (n,n’) labeled with σ. Finally, delete 

every node from which none of the newly created leaves is 

reachable (lines 10-17). Detectors set D is first created by all s 

∈ T 1 in line 19. The rest of the algorithm, lines 20-42, 

updates partial detectors in D by identifying their right 

overlapping strings in prefix trees. 

From the description of the algorithm, it takes |S|.(ℓ−r+1).r 

steps to generate (ℓ−r+1) prefix trees and |D|.(ℓ−r+1).2
r
 steps 

to generate perfect detector set D.  

Example 4: Given ℓ, r and the set of self strings S as in 

Example 1. Some steps in the Algorithm 1 generating a 

perfect detector set as in Example 2 are: Set D is first created 

as (00,1,1), (011,1,1), (110,1,1). Then the for loop (lines 

20-42) calculates D and D1 as following: 

For i = 2: D = (0001,1,2); (0010,1,2); (0111,1,2); (1100,1,2) 

and D1 = ∅. For i = 3: D = (00100,1,3); (01111,1,3); 

(11000,1,3) and D1 = (0001,1,2). For i = 4: D = (00100,1,4); 

(011110,1,4) and D1 = (0001,1,2); (11000,1,3); (100,4,4). 

The final step, D = DD1 in line 43, generates the perfect 

detector set {(0001,1,2), (00100,1,4), (100,4,4), (011110,1,4), 

(11000,1,3)}. 

B. Detection under Rcbvl matching rule 

To detect if a given string s is self or nonself, we simply 

check our Rcbvl matching rule on s against every detector in 

D. If it is the case, output s is nonself, otherwise s is self. The 

function min used in Algorithm 2 to return the smallest 

number from two values. It is easy to see that this algorithm 

has the same time complexity with Algorithm 1.  

Algorithm 2 Algorithm to detect if a given string s is self or 

nonself. 

1: procedure DETECTION (s, ℓ, r, D) 

2: for all (s’,n,m) ∈ D do 

3:  for i = n,...,m do 

4:   if s’[i...min(i + r − 1,|s’|)] occurs in s at position i then 

5:      output s is nonself 

6:     exit procedure 

7:   end if 

8:  end for 

9: end for 

10: output s is self 

11: end procedure 

IV. EXPERIMENTS 

We use a popular flow-based datasets NetFlow [19] and a 

random dataset for experiments. The flow-based NetFlow is 

generated from packet-based DARPA dataset [1] is used for 

experiment 1. This dataset focuses only on flows to a specific 

port and a IP address which receives the most number of 

attacks. It contains all 129,571 traffics (including attacks) to 

and from victims. Each flow in the datasets has 10 fields: 

Source IP, Dest. IP, Source Port, Dest. Port, Packets, Octets, 

Start Time, End Time, Flags, and Proto. Similar to the 

previous studies [19], we select the same 4 features Packets, 

Octets, Duration and Flags from the NetFlow dataset as the 

input of two experiments in case study 1. A randomly created 

dataset is used for experiments in case study 2. This dataset 

contains 50,000 binary string with the length of 30.  

Flows in NetFlow are converted into binary strings by two 

steps. The first step is to map all features to binary string 

features. After this step, a total string features are constructed 

for both normal data and anomalous one. The second step is to 

concatenate the binary string features for every flows. After 

this step, dataset contains binary strings with their length of 

49. The distributions of training and testing datasets as well as 

parameters r, ℓ for 4 experiments are described in Table 1. 

Table1. Data and parameters distribution for experiments 

and result comparison. 



A Compact Detector Set for Artificial Immune Systems 

                                                                                              8                                                            www.erpublication.org 

ℓ r Train Test 
Size (bit) Time (mil. Sec.) 

r-chunk rcbvl r-chunk rcbvl 

Case 1 

49 10 119571 10000 206810 42704 58962 11960 

49 8 79571 50000 31672 8096 48952 11085 

Case 2 

30 12 25000 25000 367092 79222 243979 44995 

30 14 40000 10000 
232405

6 

39281

5 
518999 82922 

 

 

Fig. 3. Size of detectors comparisons 

 
Fig. 4. Classification time comparisons 

 

Results in Table 1 show that our proposed algorithm reduce 

both size (bits) of detectors and time (milliseconds) to classify 

testing dataset. The comparisons of detection time and 

detectors’ size are illustrated in Fig. 3 and Fig. 4, respectively. 

V. CONCLUSION 

In this paper, we have proposed a novel NSA to generate 

perfect detector sets for string-based AIS. We developed a 

rcbvl matching rule as an extension of traditional rcb. Our 

new algorithm has a polynomial time complexity. More 

importantly, proposed algorithm always generate complete 

and non-redundant detector sets for string-based AIS. 

Experiment results show that proposed algorithm can reduce 

both detection phase time complexity and storage of 

detectors. Moreover, the varying length of the parameter r in 

the rcbvl matching rule can balance specialization and 

generalization in classification systems, which will be the next 

step of our study. How to apply the algorithm to intrusion 

detection systems would be our interesting research direction. 
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