

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-4, August 2016

 5 www.erpublication.org

Abstract— Negative selection algorithms (NSA) are methods

inspired by the T cells maturating process. They all comprise of

two phases: generation of detectors that match none of the self

samples, and classification of monitored elements as self or

nonself using these detectors. However, the detector sets

generated may be redundant. In this paper, we propose a new

negative selection algorithm to generate a complete and

non-redundant detector sets that use an extension of r-chunk

matching rule. This allows to reduces detectors storage and

classification time. Experimental results on four datasets show

the effective of proposed algorithm.

Index Terms—Immune system, negative selection, r-chunk,

detectors generation.

I. INTRODUCTION

 In the field of Artificial Immune Systems (AIS), negative

selection algorithm is class of techniques inspired by the T

cells maturating process that happens in thymus. The

discriminating mechanism between self (signal of a healthy

cell) and nonself (signal of an unhealthy cell) of T cells are

modeled by NSAs. T cells are first generated randomly and in

a large number, in the hope that every pathogen that might

infect the host could be detected by at least some of these

cells. However, the host must ensure that no cell generated

would turn against itself (autoimmune reactions). Hence,

newborn T cells must undergo the process of selection to

ensure that they are able to recognize nonself. This process

might be conducted by a negative selection: if a T cell detects

any self protein, it is discarded; otherwise, it survives [4].

Given a collection of self patterns S, a typical NSA

comprises of two phases: detector generation and detection

[2], [12]. In the detector generation phase (Fig. 1.a), the

detector candidates are generated randomly and censored by

matching them against given self samples taken from the set

S. The candidates that match any element of S are eliminated

and the rest are kept and stored in the set D. In the detection

phase (Fig. 1.b), the collection of detectors are used to

distinguish self (system components) from nonself (outlier

like viruses, worms, etc.). If an incoming data instance

matches any detector, it is claimed as nonself, and it is

claimed as self otherwise.

From a machine learning perspective, negative selection is

usually described as an anomaly detection technique. Since its

introduction, NSA has been a source of inspiration for many

computing applications, especially for intrusion detection [4],

[14], computer virus detection [9], monitoring UNIX

processes [8], spam detection [18], modeling of

immunological processes such as HIV infection modeling

[15].

Nguyen Van Truong, Faculty of Mathematics, Thai Nguyen University

of Education, Thai Nguyen City, Vietnam, Mobile No. +(84)-0915016063.

Fig. 1. Outline of a typical negative selection algorithm [13].

For binary-based AIS (i.e. the representations for cells,

detectors are binary strings), r-chunk and r-contiguous bits

(rcb) are two common matching rules used for the

construction of detector set (and also for the detection phase).

An r-chunk matching rule can be seen as a generalization of

the rcb matching rule. To date, there have been some

computing models of binary detectors that could generate a

complete and non-redundant detector set, called perfect

detector set, a set of minimum detectors with the same

detection ability in comparing to that of all possible detectors,

such as those based on prefix trees [5], [16], or automata [6].

In these models, detectors are represented as a whole structure

(tree or automata) rather than a set of individual strings. While

they provide a more compact representation of the detector

sets for AIS and therefore achieve a better detection time

complexity, these models of binary-based AIS are hard to

deploy in distributed environments. Naturally, one desirable

property of NSA is its ability to be implemented in a

distributed manner - each detector might detect different kind

of nonself, this is desirable for many applications such as in

computer security systems. Therefore, the focus of this paper

is on binary-based NSAs that employ a discrete set of

detectors (strings) so that they can be implemented in

distributed environments. We can, for example, randomly

divide the discrete set of detectors into some subsets, each one

for a nodes in in distributed environments.

With respect to binary-based AIS using discrete detector

set, to the best of our knowledge, the only algorithm for

generating a perfect and discrete set of r-chunk (rcb-based)

detectors was proposed by T. Stibor in [21] (by S. T. Wierzchoń

in ([20]), which has frequently been cited, compared, and

applied in the literature with 44 (47) citations on Google

Scholar. The main contribution of our paper is to design new

deterministic algorithm to generate a perfect and discrete set

of rcbvl-based detectors, which is equitable to a full set of

r-chunk-based detectors in term of anomaly detection.

A Compact Detector Set for Artificial Immune

Systems

Nguyen Van Truong

A Compact Detector Set for Artificial Immune Systems

 6 www.erpublication.org

Moreover, compact string-based detectors set can achieve

better memory and time complexities compared to

conventional algorithms.

The rest of the paper is organized as follows. In the next

section, we first present some basic terms and definitions.

After the introduction of strings, two common matching rules

for generating detector set, r-chunk and rcb are given. Then

we introduce an r-contiguous bit matching rule with variable

length (rcbvl) detectors. This new type of detector set is more

compact, in bits, than one bases on original r-chunk and rcb.

Prefix trees are introduced as temporary data structures for

generation. Section 3 details our new NSA that can generate

perfect detector sets base on rcbvl. Section 4 briefly describes

our experiments in generating perfect detector sets. Section 5

concludes the paper and discuss some possible future works..

II. BASIC TERMS AND DEFINITIONS

In NSAs, an essential component is the matching rule

which determines the similarity between detectors and self

samples (in the detector generation phase) and coming data

instances (in the detection phase). Obviously, the matching

rule is dependent on detector representation. In this paper,

both self and nonself cells are represented as binary strings of

fixed length. This representation is the most simple and

popular representation for detectors and data in AIS, and

other representations (such as real valued) could be reduced

to binary [10], [13].

A. Strings

An alphabet Σ is nonempty and finite set of symbols. A

string s ∈ Σ∗ is a sequence of symbols from Σ, and its length is

denoted by |s|. A string is called empty string if its length

equals 0. Given an index i ∈ {1,...,|s|}, then s[i] is the symbol

at position i in s. Given two indices i and j, whenever j ≥ i,

then s[i...j] is the substring of s with length j− i+1 that starts at

position i and if j < i, then s[i...j] is the empty string. A string

s’ is a prefix of s if s’ = s[1...j], 1 ≤ j ≤ |s|.

Given a string s ∈ Σ
ℓ
, a non-empty string d, and an index i ∈

{1,..., ℓ − r + 1}, we say that d occurs in s at position i if s[i...i

+ |d| − 1] = d. Moreover, concatenation of two strings s and s’

is s + s’.

Although our approaches can be implemented on any finite

alphabet, but strings used in all examples are binary, Σ =

{0,1}, just for easy understanding.

B. R-chunk and rcb matching rules

For binary-based AIS, the rcb and r-chunk are among the

most common matching rules. Given a positive integer r, a set

S of self strings of length ℓ. A detector under rcb matching

rule is a string of length ℓ that does not match any s ∈ S. It is

said to match another string, of the same length, if they have r

consecutive matching bits in the corresponding positions. Rcb

was introduced and used in many AIS projects [7], [11], [17].

An r-chunk detector is a tuple of a string of r bits and its

starting position with the string that does not match any s ∈ S.

An r-chunk detector (d,i) is said to match a string s if d is a

prefix of s[i..|s|]. An r-chunk matching rule is considered as a

simplification of the rcb matching rule [17]. This type of

detector helps AIS to achieve better results on data where

adjacent regions of the input data sequence are not necessarily

semantically correlated, such as in network data packets [3]. It

is noted that an r-contiguous detector [4] can be decomposed

into ℓ − r + 1 overlapping r-chunk detectors.

Example 1: Let ℓ = 6, r = 3. Given a set of five self strings S

= {s1 = 010101, s2 = 111010, s3 = 101101, s4 = 100011, s5 =

010111}. The set of all r-chunk detectors is {(000,1), (001,1),

(011,1), (110,1), (001,2), (010,2), (100,2), (111,2), (000,3),

(100,3), (111,3), (000,4), (001,4), (100,4), (110,4)}. The set

of all detectors under rcb matching rule is {001000, 001001,

011110, 110000, 110001}.

C. Rcbvl matching rule

Given a positive integer r, a set S of self strings of length ℓ.

A triple (d,i,j) of a string d ∈ Σ k , 1 ≤ k ≤ ℓ, an integer i ∈
{1,...,ℓ−r+1} and an integer j ∈ {i,...,ℓ−r+1} is called a

negative detector under rcbvl matching rule if d does not

occur in any s, s ∈ S. In another words, (d,i,j) is an rcbvl

detector if there exist j−i+1 r-chunk detectors (d 1 ,i),..., (d

j−i+1, j) that d k , d k+1 are two (r − 1)-bit overlapping strings,

k = 1,...,j − i.

Example 2: Given ℓ, r and the set S of self strings as in

Example 1. Triple (0001,1,2) is an rcbvl detector because

there exist two 3-chunk detectors (000,1), (001,2) that 000

and 001 are two 2-bit overlapping strings. A perfect detector

set D under rcbvl matching rule contains 5 variable length

detectors {(0001,1,2), (00100,1,4), (100,4,4), (011110,1,4),

(11000,1,3)}. It is a minimum detectors set (23 bits) that

covers all detector space of r-chunk detectors set in Example

1 (45 bits).

D. Prefix trees

A prefix tree T is a rooted directed tree with edge labels

from Σ where for all σ ∈ Σ, every node has at most one

outgoing edge labeled with σ. For a string s, we write s ∈ T if

there is a path from the root of T to a leaf such that s is the

concatenation of the labels on this path. This tree structure is

important for generating rcbvl detectors set.

Example 3: Given ℓ, r and the set of self strings S as in

Example 1, four prefix trees presenting all binary 3-chunk

detectors are in Fig. 2.

Fig.2. Trees represents 3-chunk detectors set in Example 1.

Tree Ti presents 3-chunk detectors (d,i), i = 1,...,4.

III. NEW NEGATIVE SELECTION ALGORITHM

Given a non-empty set S of self strings of length ℓ, and an

integer r ∈ {1,...,ℓ − r + 1}, this section presents a new NSA

bases on rcbvl matching rule.

A. Detectors set generation under rcbvl matching rule

Algorithm 1 Algorithm to generate perfect rcbvl detector

set.

1: procedure G ENERATION D ETECTORS (S, ℓ, r, D)

2: for i = 1,...,ℓ − r + 1 do

3: Create an empty prefix tree Ti

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-4, August 2016

 7 www.erpublication.org

4: end for

5: for all s ∈ S do

6: for i = 1,...,ℓ − r + 1 do

7: insert every s[i...i + r − 1] into Ti

8: end for

9: end for

10: for i = 1,...,ℓ − r + 1 do

11: for all nonleaf node n ∈ Ti and all σ ∈ Σ do

12: if no edge with label σ starts at n then

13: create a new leaf n’ and an edge (n,n’)

labeled with σ.

14: end if

15: end for

16: delete every node n ∈ Ti from which none of the

newly created leaves is reachable.

17: end for

18: D1 = ∅

19: D = {(s,1,1)|s ∈ T1}

20: for i = 2,...,ℓ − r + 1 do

21: D2 = ∅

22: for all (s,k,j) ∈ D do

23: if there exists a s’ ∈ Ti where s[i−k+1...|s|]

is prefix of it then

24: D2 = D2 {(s+s’[|s|−j+k...|s’|],k,i)}

25: delete every node n ∈ Ti from which only

nodes in the s’ is reachable

26: for all s’ ∈ Ti where s[i − k + 1...|s|] is

prefix of it do

27: if |s| − i + k < r then

28: D2 = D2{(s[|s|] + s’,i − 1,i)}

29: else

30: D2 = D2{(s’,i,i)}

31: end if

32: delete every node n ∈ Ti from which

only nodes in the s’ is reachable

33: end for

34: else

35: D1 = D1{(s,k,j)}

36: end if

37: end for

38: for all s’∈ Ti do

39: D2 = D2{(s’,i,i)}

40: end for

41: D = D2

42: end for

43: D = D D1

44: end procedure

Algorithm 1 summarizes the first phase of new NSA. Some

prefix trees are first used to generate perfect detectors set

from S and then this set is used to distinguish if a new sample

as self or nonself. In the algorithm, the process of generating

We first construct for every position i ∈ {1,...,ℓ − r + 1} a

prefix tree Ti . Each prefix tree Ti can be constructed as

follows: start with an empty prefix tree and insert every s[i...i

+ r − 1], s ∈ S, into it (lines 5-9). Next, for every non-leaf node

n and every σ ∈ Σ where no edge with label σ starts at n, create

a new leaf n’ and an edge (n,n’) labeled with σ. Finally, delete

every node from which none of the newly created leaves is

reachable (lines 10-17). Detectors set D is first created by all s

∈ T 1 in line 19. The rest of the algorithm, lines 20-42,

updates partial detectors in D by identifying their right

overlapping strings in prefix trees.

From the description of the algorithm, it takes |S|.(ℓ−r+1).r

steps to generate (ℓ−r+1) prefix trees and |D|.(ℓ−r+1).2
r
 steps

to generate perfect detector set D.

Example 4: Given ℓ, r and the set of self strings S as in

Example 1. Some steps in the Algorithm 1 generating a

perfect detector set as in Example 2 are: Set D is first created

as (00,1,1), (011,1,1), (110,1,1). Then the for loop (lines

20-42) calculates D and D1 as following:

For i = 2: D = (0001,1,2); (0010,1,2); (0111,1,2); (1100,1,2)

and D1 = ∅. For i = 3: D = (00100,1,3); (01111,1,3);

(11000,1,3) and D1 = (0001,1,2). For i = 4: D = (00100,1,4);

(011110,1,4) and D1 = (0001,1,2); (11000,1,3); (100,4,4).

The final step, D = DD1 in line 43, generates the perfect

detector set {(0001,1,2), (00100,1,4), (100,4,4), (011110,1,4),

(11000,1,3)}.

B. Detection under Rcbvl matching rule

To detect if a given string s is self or nonself, we simply

check our Rcbvl matching rule on s against every detector in

D. If it is the case, output s is nonself, otherwise s is self. The

function min used in Algorithm 2 to return the smallest

number from two values. It is easy to see that this algorithm

has the same time complexity with Algorithm 1.

Algorithm 2 Algorithm to detect if a given string s is self or

nonself.

1: procedure DETECTION (s, ℓ, r, D)

2: for all (s’,n,m) ∈ D do

3: for i = n,...,m do

4: if s’[i...min(i + r − 1,|s’|)] occurs in s at position i then

5: output s is nonself

6: exit procedure

7: end if

8: end for

9: end for

10: output s is self

11: end procedure

IV. EXPERIMENTS

We use a popular flow-based datasets NetFlow [19] and a

random dataset for experiments. The flow-based NetFlow is

generated from packet-based DARPA dataset [1] is used for

experiment 1. This dataset focuses only on flows to a specific

port and a IP address which receives the most number of

attacks. It contains all 129,571 traffics (including attacks) to

and from victims. Each flow in the datasets has 10 fields:

Source IP, Dest. IP, Source Port, Dest. Port, Packets, Octets,

Start Time, End Time, Flags, and Proto. Similar to the

previous studies [19], we select the same 4 features Packets,

Octets, Duration and Flags from the NetFlow dataset as the

input of two experiments in case study 1. A randomly created

dataset is used for experiments in case study 2. This dataset

contains 50,000 binary string with the length of 30.

Flows in NetFlow are converted into binary strings by two

steps. The first step is to map all features to binary string

features. After this step, a total string features are constructed

for both normal data and anomalous one. The second step is to

concatenate the binary string features for every flows. After

this step, dataset contains binary strings with their length of

49. The distributions of training and testing datasets as well as

parameters r, ℓ for 4 experiments are described in Table 1.

Table1. Data and parameters distribution for experiments

and result comparison.

A Compact Detector Set for Artificial Immune Systems

 8 www.erpublication.org

ℓ r Train Test
Size (bit) Time (mil. Sec.)

r-chunk rcbvl r-chunk rcbvl

Case 1

49 10 119571 10000 206810 42704 58962 11960

49 8 79571 50000 31672 8096 48952 11085

Case 2

30 12 25000 25000 367092 79222 243979 44995

30 14 40000 10000
232405

6

39281

5
518999 82922

Fig. 3. Size of detectors comparisons

Fig. 4. Classification time comparisons

Results in Table 1 show that our proposed algorithm reduce

both size (bits) of detectors and time (milliseconds) to classify

testing dataset. The comparisons of detection time and

detectors’ size are illustrated in Fig. 3 and Fig. 4, respectively.

V. CONCLUSION

In this paper, we have proposed a novel NSA to generate

perfect detector sets for string-based AIS. We developed a

rcbvl matching rule as an extension of traditional rcb. Our

new algorithm has a polynomial time complexity. More

importantly, proposed algorithm always generate complete

and non-redundant detector sets for string-based AIS.

Experiment results show that proposed algorithm can reduce

both detection phase time complexity and storage of

detectors. Moreover, the varying length of the parameter r in

the rcbvl matching rule can balance specialization and

generalization in classification systems, which will be the next

step of our study. How to apply the algorithm to intrusion

detection systems would be our interesting research direction.

ACKNOWLEDGMENT

Research reported in this publication was supported by the

ASEAN-European Academic University Network

(ASEA-UNINET).

REFERENCES

[1] DARPA dataset.
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/dat

a/index.html

[2] A. S. A. Aziz, M. Salama, A. ella Hassanien, and S. E. O. Harafi.

Detectors generation using genetic algorithm for a negative selection

inspired anomaly network intrusion detection system. In Proceedings

of the FedCSIS’2012, pp. 597–602, 2012.

[3] J. Balthrop, F. Esponda, S. Forrest, and M. Glickman. Coverage and

generalization in an artificial immune system. In Genetic and

Evolutionary Computation Conference (GECCO), pp. 3–10, 2002.

[4] D. Dasgupta. Artificial Immune Systems and Their Applications.

Springer-Verlag, Berlin Heidelberg, 1998.

[5] M. Elberfeld and J. Textor. Efficient algorithms for string-based

negative selection. In International Conference on Artificial Immune

Systems, pp. 109–121, 2009.

[6] M. Elberfeld and J. Textor. Negative selection algorithms on strings

with efficient training and linear-time classification. Theoretical

Computer Science, 412(6):534 – 542, 2011.

[7] F. Esponda, S. Forrest, and P. Helman. The crossover closure and

partial match detection. In International Conference on Artificial

Immune Systems (ICARIS), pp. 249–260. Springer-Verlag, 2003.

[8] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of

self for UNIX processes. In IEEE Symposium on Research in Security

and Privacy, pp. 120–128, 1996.

[9] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself

discrimination in a computer. In IEEE Symposium on Security and

Privacy, pp. 202–212, 1994.

[10] F. González, D. Dasgupta, and J. Gómez. The effect of binary matching

rules in negative selection. In Genetic and Evolutionary Computation

Conference (GECCO), pp. 195–206, 2003.

[11] S. Hofmeyr. An immunological model of distributed detection and its

application to computer security. PhD thesis, The University of New

Mexico, ALbuquerque, NM, 1999.

[12] Z. Ji. Negative Selection Algorithms: from the Thymus to V-detector.

PhD thesis, The University of Memphis, August 2006.

[13] Z. Ji and D. Dasgupta. Revisiting negative selection algorithms.

Evolutionary Computation, 15:223–251, 2007.

[14] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J.

Twycross. Immune system approaches to intrusion detection - a

Review. Natural Computing, 6:413–466, Dec. 2007.

[15] A. Komrlj, E. Read, Y. Qi, T. Allen, M. Altfeld, S. Deeks, F. Pereyra,

M. Carrington, B. Walker, and A. Chakraborty. Effects of thymic

selection of the T-cell repertoire on HLA class I-associated control of

HIV infection. Nature, 465:350–354, 2010.

[16] V. T. Nguyen, X. H. Nguyen, and C. M. Luong. A novel combination

of negative and positive selection in artificial immune systems. In

IEEE International Conference on Computing and Communication

Technologies, Research, Innovation, and Vision for the Future (RIVF),

pp. 6–11, 2013.

[17] J. K. Percus, O. E. Percus, and A. S. Perelson. Predicting the size of the

T-cell receptor and antibody combining region from consideration of

efficient self-nonself discrimination. volume 90, pp. 1691–1695, 1993.

[18] Y. Tan. Anti-Spam Techniques Based on Artificial Immune System.

CRC Press, 2016.

[19] Q. A. Tran, F. Jiang, and J. Hu. A real-time netFlow-based intrusion

detection system with improved BBNN and high-frequency field

programmable gate arrays. In IEEE International Conference on Trust,

Security and Privacy in Computing and Communications, pp.

201–208, 2012.

[20] S. T. Wierzchoń. Generating optimal repertoire of antibody strings in

an artificial immune system. In IIS’2000 Symposium on Intelligent

Information Systems, pp. 119–133, 2000.
[21] T. Stibor, K. M. Bayarou, and C. Eckert, “An investigation of R-chunk

detector generation on higher alphabets,” in Genetic and Evolutionary

Computation Conference (GECCO), vol. 3102 of Lecture Notes in

Computer Science, pp. 299–307, 2004.

BIOGRAPHY

Nguyen Van Truong is a lecturer in the Faculty of

Mathematics at Thai Nguyen University of Education,

from where he received a Bachelor of Mathematics and

Informatics in 2000. He finished his master course on

Computer science at Vietnamese National University in

2003. He is currently a PhD student at Institute of

Information Technology (IOIT), Vietnamese Academy of

Science and Technology (VAST). He has taught a wide

variety of courses for UG students and guided several projects. He has

published several papers in National Journals & International Conferences.

His research interests are embedded systems and artificial immune systems.

