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Abstract— The Trafficaccidentfrequencyhasbeenincreasing 

inEgyptinthe recentyears for many reasons (human, place, and 

time). This paper aims to find the best model for the annual 

traffic accidents statistics in Egypt from 2005 to 2015  and make 

a prediction of  the number of annual traffic accidents likely to 

occur in future. The analysis of time series data of traffic 

accidents is presented using the classical statistical methods and 

Box-Jenkins methodology to build ARIMA model. 

 
Index Terms— Time series analysis, classical statistical 

methods, forecasting, ARIMA, traffic accident. 

I. INTRODUCTION 

  Victims due to traffic accidents are more than 5000 of death 

and 22000 injures with different hurts, annually. Economical 

loses are 2 % from national total income according to data of 

Egyptian society for protection from traffic accidents. Traffic 

accidents are considered the second reason for death in Egypt 

and 80 % of victims are between 15 and 45 years old (Ali 

(2009)). For that, this paper analyzes and predicts the future 

traffic accidents using statistics methods. 

Time series models have been the basis for process behavior 

studies or metrics over a period of time. There are many  

application areas of time series models such as sales 

forecasting, weather forecasting, and inventory studies. In 

decisions that involve factor of uncertainty of the future, time 

series models have been found one of the most effective 

methods of forecasting (Makridakis et al, 1998) .  

Time series data often have time-dependent moments (e.g. 

mean, variance, skewness, kurtosis).The mean or variance of 

many time series increases over time.This is a property is 

called nonstationarity. Astationary time series have mean, 

variance, and autocorrelation function that are essentially 

constant through time. 

Among the most important models of time series analysis is 

the model of ARIMA which has been  introduced by Box and 

Jenkins.The Box and Jenkins model assumes that the time 

series is stationary. For nonstationary time series,  Box and 

Jenkins recommend differencing of  one or more time series 

to achieve stationarity. This produces an ARIMA model (auto 

regressive (AR), Integrated (I) and the moving average (MA) 

). 

Ali (2009) decided three main factors (human, place and 

time) which have the most effect on the traffic accidents in 

Egypt. Momani (2009) presented the time series analysis 

rainfall data in Jordanand studied the  Box-Jenkins 

methodology to build ARIMA model for monthly rainfall data 

taken for Amman airport station for the  period from 
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1922-1999 with a total of 936 readings. ARIMA (1, 0, 0) (0, 

1,1)12 model was developed. 

Tularam and Mahbub (2010)  examined a large data set 

involving more than 50 years of rainfall and temperature 

where spectral analysis and time series analysis-ARIMA 

methodology were used to analyze climatic trends and 

interactions. 

Balogun etal (2014) analyzed a data set collected from 

Nigerian traffic accidents using time series approach. The 

data collected spanned the period between 1989 to 2008. 

They found that the best model was AR (1) for annual  data.  

Mutangi (2015)  analyzed the data of traffic accidents in 

Zimbabwe by three ARIMA models which were suggested 

based on the ACF and PACF plots of the differenced series. 

These were ARIMA(0,1,0), ARIMA(1,1,0) and 

ARIMA(1,1,1) and he decided that ARIMA (0,1,0) was the 

best model for the Zimbabwe annual Traffic Accidents data.  

II. THE TIME SERIES ANALYSIS 

A time series is a sequential set of data points, measured 

typically over successive times. It is mathematically defined 

as a set of vectors  yt, t=0,1,2, … where, the subscript  t  is the 

time point  at which y  is observed (Pankratz (1983)). 

According to Chatfield (1987) time series is a collection of 

observation segmental in time at regular intervals. There are 

four factors affecting time series observations: the trend 

effect, the seasonal effect, cyclical effect and random 

variation. The majority of the time series contains a trend 

effect either increasing or decreasing,  therefore it's the most 

important effect that must be studied when analyzing  the time 

series. This analysis can be done  by several methods such as  

the classic approaches, least  square method (OLS) , matrices, 

semi average, quadratic trend model and moving average 

method (MA) .   

The Box-Jenkins methodology which is known by ARIMA 

models will be introduced, ARIMA model as a non-stationary 

time series model is made stationary by applying finite 

differencing of the data points. The mathematical formulation 

of the ARIMA has (p,d,q) form where  p, d and q are integers 

greater than or equal to zero and refer to the order of the 

autoregressive (p), the order of difference (d), and the order of 

moving average (q) parts of the model .The integer d controls 

the level of differencing where d equal 1 is generally  enough 

in most cases. When d is equal to 0, then it reduces to an 

ARMA(p,q) models. The linear regression is estimated as it 

follows. 

 

tot ty   1                                              (2.1) 

Where tot andy  ,,, 1  are the current observation, 

constant of regression line, the regression coefficient and the 
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random errors which satisfy independent identical 

distribution (i.i.d) (normal distribution with mean equal zero 

and constant variance) respectively. Then the estimate of 

equation (2.1) can be written as shown in equation (2.2). 

ty o 1
ˆˆˆ  

                                                     (2.2) 

 

III. THE DATA SET 

The time series data  set (shown in Table 1 and figure 1) 

presents the number of  the traffic accidents according to the 

Central Agency for Public Mobilization and Statistics 

(CAPMAS) in Egypt. 

 

Table 1: The Traffic Accidents from 2005 to 2015 

Year 

Accident 

Numbers 

2005 21352 

2006 18061 

2007 22900 

2008 20938 

2009 22793 

2010 24371 

2011 16830 

2012 15516 

2013 15578 

2014 14403 

2015 14548 

 

 

 
Figure 1: The observed values 

IV. THE CLASSICAL METHODS 

This section presnts the classical method to analyze  the data 

set (in table 1) and presents the method accuracy  by using 

some accuracy measures such as the mean absolute  deviation 

MAD,MAPE and mean square error MSE.The classical time 

series analysis method decomposes the time series function  yt 

= f(t) into up to four componentsMcClave and Synch(2001). 

1.Trend: a long-term monotonic change of the average level 

of the time series. 

2.The Trade Cycle: a long wave in the time series. 

3.The Seasonal Component: fluctuations in time series that 

recur during specific time periods. 

4.The Residual component: the influences on the time series 

that are not explained by the other three components. 

4.1 the least square method OLS 

The equation (2.2) is solved using the OLS method as it 

follows. 
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By solving (4.1) and (4.2), the regression line can be written 

as it follows. 

tyt 77.7941.23613ˆ      (4.3) 

The predictive values are shown  in Table (2),  the graph of 

predictive and observed data is shown in Figure (2), and the 

statistical analysis is presented in tables 3,4 and 5. 

 

Table 2: The Predictive Values using OLS 

Year(t) yt tŷ  

1(2005) 21352 22818.66 

2(2006) 18061 22024.22 

3(2007) 22900 21229.78 

4(2008) 20938 20435.34 

5(2009) 22793 19640.9 

6(2010) 24371 18846.46 

7(2011) 16830 18052.02 

8(2012) 15516 17257.58 

9(2013) 15578 16463.14 

10(2014) 14403 15668.7 

11(2015) 14548 14874.26 

12(2016)  14075.86 

 

 

 
Figure 2: The observation and predictive values using 

OLS method 

 

Table 3: Model Summary 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .710
a

 .504 .449 2756.30749 

 

a. Predictors: (Constant), year 

 
Table 4: ANOVAa 

 

Model Sum of Squares Df Mean Square F Sig. 

1 

Regression 69483005.682 1 69483005.682 9.146 .014b 

Residual 68375079.045 9 7597231.005   

Total 137858084.727 10    

a. Dependent Variable: number of accident 
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b. Predictors: (Constant), year 

 Table 5: Coefficientsa 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 23613.182 1782.421  13.248 .000 

year -794.773 262.804 -.710 -3.024 .014 

a. Dependent Variable: number of accidents 
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Where ttt yye ˆ  

 

4.2 The Matrices Method 

To solve the equation (2.2) using matrices, we can rewrite 

(2.2) as it follows. 

ttt XY ̂                                                                                  (4.7) 
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Then  

tyt 77.7941.23613ˆ                                                  (4.9) 

This method gives approximately the same resultsas that of  

OLS method. 

 

4.3 The Moving Average (MA) Method 

Moving average(MA) method is one of widely known 

technical indicators used to predict the future data in time 

series analysis. The moving average is extremely useful 

for forecasting long-term trendswhere the average represents 

the “middling” value of a set of numbers. First of all, the 

period of the moving average  has to be decided and for this 

data set the period of 3 values is estimated for the 

observations  shown in Tables5 and  6 and Figure 3. 

 

Table 6:  The Predictive Values using MA method 

yt 

Moving 

summation 

(MS) 
)(3

ˆ
periodMA

MS
yt   

21352   

18061 62313 20771 

22900 61899 20633 

20938 66631 22210.33 

22793 68102 22700.67 

24371 63994 21331.67 

16830 56717 18905.67 

15516 47924 15974.67 

15578 45497 15165.67 

14403 44529 14843 

14548   

 

 

Figure 3: The observation and predictive values using 

MA method 
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4.4 The Semi Average Method  

To solve the equation (2.2) using the semi average method, 

time series data is divided into two equations to be solvedto  

find the parameters of (2.2). Because the data have odd 

observations, then we must delete the observation number 

six  as it follows. 

111 ty o                                                                        (4.13) 

3,8.21208 11  ty  

222 ty o                                                                       (4.14) 

9,15375 11  ty  

Then 

tyt 3.9727.24125ˆ                                                           (4.15) 
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The predictive values and real data are illustrated in table (7) 

and Figure (4)  

Table 7:The Predictive Values using semi average 

year yt tŷ  

1 21352 23153.4 

2 18061 22181.1 

3 22900 21208.8 

4 20938 20236.5 

5 22793 19264.2 

6 24371 18291.9 

7 16830 17319.6 

8 15516 16347.3 

9 15578 15375 

10 14403 14402.7 

11 14548 13430.4 

 

 

Figure (4): The observation and predictive values using 

semi average method 
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4.5 The quadratic trend model 

In some cases, a linear trend is inadequate to capture the trend 

of a time series. A natural generalization of the linear trend 

model is the polynomial trend model as in equation (4.19). 

yt = β0 + β1t + β2t
2
 + … + βpt

p
                                                      (4.19) 

where p is a positive integer.  

The quadratic linear trend model is a special case of the 

polynomial trend model (p=1), (for economic time series we 

almost never require p > 2). Then the equation (4.19) can be 

written as it follows.  

yt = β0 + β1t + β2t
2
(4.20) 

By using Minitap 17,  the equationis estimated as it follows. 

yt= 20129+774 t+126.8t
2
                                                                

(4.21) 

The equation (4.21), the predictive and actual values are 

illustrated in Figure (5). 

 

 
Figure (5): The observation and predictive values using 

quadratic trend model 
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V. THE BOX AND JENKINS METHODOLOGY 

Box - Jenkins analysis refers to a systematic method of 

identifying, fitting, checking, and forecasting. Identification 

determines the appropriate values of p, d, & q using the ACF, 

PACF, and unit root tests (p is the AR order, d is the 

integration order, q is the MA order).Estimation estimates an 

ARIMA model using values of p, d, & q. Diagnostic checking 

checks residuals of estimated ARIMA model(s) to check if 

they are white noise.Forecasting produces sample forecasts or 

set aside last few data points for in-sample forecasting.The 

Box-Jenkins model assumes that the time series is stationary 

and it recommends differencing non-stationary series one or 

more times to achieve stationarity (Box et al (1994)). 

Using integrated autoregressive, moving average (ARIMA) 

time series model is appropriate for time series of medium to 

long length. 

),0(~

,,

)1.5(......

2

1111







t

qp

tqtqtptptt

errorrondomthe

andMAofparameterARofparameter

yyyyy  

 

In this section the four steps (identification, estimation, 

checking and forecasting) 

are discussed. 

 

5.1 Autocorrelation Function (ACF) 

Autocorrelation Function (ACF) computes the correlation 

between different lags of a series. The ACF ( k ) represents 

the degree of persistence over respective lags of a variable. 

The autocorrelation function is presented in Figure (6) 
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ACF (0) = 1, ACF (k) = ACF (-k) 
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Figure (6): The Autocorrelation Function 
 

Figure (6) proved that the ACF  decreases quickly after one 

lag which means thatthe model AR becomes stationary after 

one difference. 

 

5.2The Partial Autocorrelation Function (PACF) 

The Partial Autocorrelation Function  (PACF) expresses 

information useful in determining the order of an ARIMA 

model (Box et al(1994)). PACF coefficient θkk  is the 

correlation between ytand yt-k after omitting the effect of 

yt-1,…,yt-k-1.  The lag k partial autocorrelation is the partial 

regression coefficient, in the k
th

order autoregression. 

yt = θk1yt-1 + θk2yt-2 + …+ θkkyt-k + εt                                                                            

(5.3) 

PACF is represented in Figure (7). 
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Figure (7): The Partial Autocorrelation Function 

 

Figure (7) shows that the PACF  decreases quickly after one 

lag. This means that the model MA is of order one. From ACF 

and PACF, we can judge that the number of traffic accidents 

appropriate model is ARIMA(1,1,1) and this concludes 

identification step. 

tttt yyy    1111                                                      

(5.4) 

Then the parameters will be estimated and the estimation 

using spss 21is presented in Table 8 and 9. The residual 

statistic is also presented in Table 9. 

 

Table 8 : Parameter estimation 

Type Coef SE Coef T P 

AR1 0.2315 0.4662 0.50 0.635 

MA1 0.9088 03957 2.30 0.055 

constant -576.7 166.6 -3.46 0.011 

 

111 9088.02315.07.576   ttt yyy (5.5) 

 

Table 9:The Model Fit 

Fit Statistic Mean 

  

Stationary R-squared 0.265 

R-squared 0.408 

RMSE 3491.332 

MAPE 12.111 

MSE 10282406 

MAE 2317.429 

MaxAE 4044.052 

Normalized BIC 17.237 

 

Thediagnostic step depends on ACF and PACF of residuals of 

the data which are illustrated in Figure 9 and 10.  
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Figure (8)autocorrelation for the residuals of model 

ARIMA(1,1,1) 
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Figure9: partial autocorrelation for the residuals of 

model ARIMA(1,1,1) 

 

Table10: Model statistics 

Model Model Fit statistics Ljung-Box 

Q(18) 

acc.no-Model_1 

1 

Stationary 

R-squared 

MAE DF 

. 

0 0.275 2340.675 

 

Figure (8), (9) and Table (10) illustrate  the residuals of the 

model following  random pattern. There is no correlation 

between the random errors (from Ljung-Box) which means 

that the model represents the data. This concludes the 

Forecastingfinal step where the current data will be 

introduced in Table 11 and Figure 10. 

 

 

Table 11:The Predictive Values using ARIMA(1,1,1) ; 

95% limits. 

 

Period Forecast Lower Upper Actual 

2008 20165.1      13878.9 26451.4 20938.0 

2009 18955.3 12350.0 25560.6 22793.0 

2010 18098.5 11411.4     24785.6 24371.0 
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2011 17323.4 10586. 24059.9 16830.0 

2012 16567.3 9787.8       23346.7 15516.0 

2013 15815.5 8994.8       22636.2   15578.0 

2014 15064.7      8203.3 21926.2   14403.0 

2015 14314.2      7412.3       21216.1   15578.0 

2016 13563.7       6621.7       20505.8  

2017 12813.3 5831.3       19795.3  

2018 12062.8 5041.1       19084.5  
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Figure (10):The observation and predictive values using 

ARIMA(1,1,1) 

 

VI. THE CONCLUSIONS 

Ranging global rate of road death toll per 10 thousand 

vehicles, between 10 and 12 dead, but he arrives in Egypt to 

25 people, twice the world average, and also has a death toll 

of road accidents per 100 km in Egypt, 131 people were 

killed, while the global average ranges between 4 and 20 

people, which means that the rate in Egypt more than 30 times 

the global average, and also the cruelty of the incident tells us 

that Egypt is happening with 22 people per 100 wounded, 

while the global average 3 deaths per 100 injured. 

Therefore this paper has presented the results of the statistical 

analysis of traffic accidents data in Egypt and also many 

models. The traffic accidents data was statistically analyzed 

by classical method and Box and Jenkins method. Among the 

classical methods quadratic trend linear method was the best 

because of its least values of accuracy measures (MAPE, 

MAD, and MSE). Box and Jenkins was the best in 

representing the time series data. Because the classical 

method treats the regression relationship as deterministic, it is 

very sensitive to any data update. Time series have many 

stochastic trends and the Box and Jenkins model can be 

modified to accommodate any data update it can be checked. 
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