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 

Abstract— Present article deals with the reflection of  

wave’s incident at the surface of transversely isotropic 

micropolar visco elastic medium under the theory of 

thermoelasticity of type-II and type-III. The wave equations are 

solved by imposing proper conditions on components of 

displacement, stresses and temperature distribution. It is found 

that there exist four different waves viz., quasi-longitudinal 

displacement(qLD)wave, quasi transverse 

displacement(qTD)wave, quasi transverse microrotational 

(qTM)wave and quasi thermal wave (qT). Amplitude ratio of 

these reflected waves are presented, when different waves are 

incident. Numerically simulated results have been depicted 

graphically for different angle of incidence with respect to 

frequency. Some special cases of interest also have been 

deduced form the present investigation. 
 

Index Terms—Micropolar, Reflection, Amplitude Ratios, 

Viscoelastic.  

I. INTRODUCTION 

 

Depending upon the mechanical properties, the materials 

of earth have been classified as elastic, viscoelastic, sandy, 

granular, microstructure etc. Some parts of earth may 

supposed to be composed of material possessing 

micropolar/granular structure instead of continuous elastic 

materials. To explain the fundamental departure of 

microcontinuum theories from the classical continuum 

theories, the former is a continuum model embedded with 

microstructures to describe the microscopic motion or a 

non-local model to describe the long range material 

interaction. This extends the application of the continuum 

model to microscopic space and short-time scales.  

 

     Material is endowed with microstructure, like atoms 

and molecules at microscopic scale, grains and fibers or 

particulate at mesoscopic scale. Homogenization of a 

basically heterogeneous material depends on scale of interest. 

When stress fluctuation is small enough compared to 

microstructure of material, homogenization can be made 

without considering the detailed microstructure of the 

material. However, if it is not the case, the microstructure of 

material must be considered properly in a homogenized 

formulation [1], [2]. The concept of microcontinuum, 

proposed by Eringen [1], can take into account the 

microstructure of material while the theory itself remains still 
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in a continuum formulation. The first grade microcontinuum 

consist a hierarachy of theories, such as, micropolar, 

microstretch and micromorphic, depending on how much 

micro-degrees of freedom is incorporated. These 

microcontinuum theories are believed to be potential tools to 

characterize the behavior of material with complicated 

microstructures. 

 

The most popular microcontinuum theory is micropolar one, 

in this theory, a material point can still be considered as 

infinitely small, however, there are microstructures inside of 

this point. So there are two sets of variable to describe the 

deformation of this material point, one characterizes the 

motion of the inertia center of this material point; the other 

describes the motion of the microstructure inside of this point. 

In micropolar theory, the motion of the microstructure is 

supposed to be an independently rigid rotation. Application 

of this theory can be found in [1] and [3]. 

  

 Recently, the theory of thermoelasticity without energy 

dissipation, which provides sufficient basic modifications to 

the constitutive equation to permit the treatment of a much 

wider class of flow problems, has been proposed by Green 

and Naghdi [4] (called the GN theory). The discussion 

presented in the above reference includes the derivation of a 

complete set of governing equations of the linearized version 

of the theory for homogeneous and isotropic materials in 

terms of displacement and temperature fields and a proof of 

the uniqueness of the solution of the corresponding initial 

mixed boundary value problem.   Chandrasekharaiah and 

Srinath [5] investigated one-dimensional wave propagation 

in the context of the GN theory.  

 

          The aim of the present paper is to study the 

reflection of waves in transversely isotropic micropolar 

viscoelastic medium under the theory of thermoelasticity of 

type-II and type-III. The propagation of waves in micropolar 

materials has many applications in various fields of science 

and technology, namely, atomic physics, industrial 

engineering, thermal power plants, submarine structures, 

pressure vessel, aerospace, chemical pipes and metallurgy.  

The graphical representation in given for amplitude ratios of 

various reflected waves for different incident waves at 

different angle of incidence i.e. for 𝜃 = 30𝑜, 45𝑜  𝑎𝑛𝑑 90𝑜 .    
 

II. BASIC EQUATIONS  

 

The basic equations in dynamic theory of the plain strain of a 

homogeneous, transversely isotropic micropolar viscoelastic 
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medium following Eringen [1] and Green and Naghdi  [4] in 

the theory of thermoelasticity of type-II and type-III in 

absence of body forces, body couples and heat sources are 

given by: 

 

Balance laws 

                        ijij ut ,                                                
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The constitutive relations can be given as: 

𝑡𝑘𝑙 = 𝐴𝑘𝑙𝑚𝑛𝐸𝑚𝑛 + 𝐺𝑘𝑙𝑚𝑛Ψ𝑚𝑛 − 𝛽𝑘𝑙𝑇, 
𝑚𝑘𝑙 = 𝐴𝑙𝑘𝑚𝑛𝐸𝑚𝑛 + 𝐺𝑚𝑛𝑙𝑘Ψ𝑚𝑛                                        (4) 

 

Where 

𝐴𝑖𝑗𝑘𝑙 = 𝐴′𝑖𝑗𝑘𝑙 + 𝐴′′𝑖𝑗𝑘𝑙  
𝜕

𝜕𝑡
,  

𝐵𝑖𝑗𝑘𝑙 = 𝐵′𝑖𝑗𝑘𝑙 + 𝐵′′𝑖𝑗𝑘𝑙  
𝜕

𝜕𝑡
,  

𝐺𝑖𝑗𝑘𝑙 = 𝐺′𝑖𝑗𝑘𝑙 + 𝐺′′𝑖𝑗𝑘𝑙  
𝜕

𝜕𝑡
,  

 

 deformation and wryness tensor are defined by 

 

 klklmlkmklkl ue ,, ,  
,                                              

(5) 

In these relations, we have used the following notations:  is 

the density, lkm permutation symbol, 𝑢𝑖 components of 

displacement vector, i  components of microrotation vector, 

𝑡𝑘𝑙 components of the stress tensor, 𝑚𝑘𝑙 components of the 

couple stress tensor, kle components of micropolar strain 

tensor, kl  are the characteristic constants of the theory, 
*c

is specific heat at constant strain, *
klK is the thermal 

conductivity, 𝛽𝑘𝑙 = 𝐴𝑘𝑙𝑚𝑛𝛼𝑚𝑛  are the thermal elastic 

coupling tensor,  𝛼𝑚𝑛  are the coefficient of linear thermal 

expansion.  

   

III. FORMULATION OF THE PROBLEM 

In present case we consider homogeneous, transversely 

isotropic micropolar viscoelastic medium under the theory of 

thermoelasticity of type-II and type-III, initially in an 

undeformed state and at uniform temperature 𝑇𝑜. We take the 

origin of coordinate system on the plane surface with 𝑥3 axis 

pointing normally into the half-space, which is thus 

represented by 𝑥3 > 0. We restricted our analysis to the two 

dimensional problem by assuming the displacement vector 𝑢⃗  

and microrotation vector 𝜙⃗   as  

 

𝑢⃗ = (𝑢1, 0, 𝑢3), 𝜙⃗ = (0, 𝜙2, 0)                              (6) 

 

With the aid of equation (6), the field equations (1)-(4) 

for transversely isotropic micropolar viscoelastic medium 

under the theory of thermoelasticity of type-II and type-III 

reduce to:  
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 are the coefficients of linear thermal expansion and we have 

used the notations 11 → 1, 33 → 3, 12 → 7, 13 → 6, 23 → 4 

for the material constants.
 

 

For simplification we use the following 

non-dimensional variables: 
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where L is a parameter having dimension of length and 𝑐1is 

the longitudinal wave velocity of the medium.  
   

IV.  SOLUTION OF THE PROBLEM 

 

Let 𝑝 (𝑝1, 0, 𝑝3) denote the unit propagation vector of the 

plane waves propagating in 𝑥1𝑥3-plane. 

We seek plane wave solution of the equations of motion of 

the form 
)(

231231
3311),,,(),,,(

ctxpxpi
eTuuTuu


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                    

                                                                                     (12) 

where  and k are respectively the phase velocity and the 

wave number the components ),,,( 231 Tuu   define the 

amplitude and polarization of particle displacement, 

microrotation and temperature distribution in the medium.  

 

With the help of equations (11) and (12) in equations 

(7)-(10), we get four homogeneous equations in four 

unknowns. Solving the resultant system of equations for 
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non-trivial solution we obtain, 

 

02468  EDcCcBcAc ,           (13) 

where  

𝐴 = 𝑏4 −
𝑏5
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𝜔2
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= 𝑏1 − 𝑏′
2 − 𝑏4𝑎1, 
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13) + 𝑎14(𝑏15 − 𝑏18 + 𝑏′

15)
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′
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plane-wave incident angle with x3-axis. 

The roots of this equation gives four values of 𝑐2. Four 

positive values of c will b-e the velocities of propagation of 

four possible waves. The waves with velocities 𝑐1, 𝑐2, 𝑐3, 𝑐4  
correspond to four types of quasi waves. Let us name these 

waves as quasi-longitudinal displacement (qLD) wave, quasi 

transverse displacement (qTD) wave, quasi transverse 

microrotational (qTM) wave and quasi thermal wave (qT). 

V. REFLECTION OF WAVES 

We consider a transversely isotropic micropolar viscoelastic 

medium under the theory of thermoelasticity of type-II and 

type-III occupying the region 03 x . Incident qLD, qTD, 

qTM or qT waves at the interface will generate reflected 

qLD, qTD, qTM and qT waves in the half space 03 x . The 

total displacements and temperature distribution are given by  

 

,),,,1(),,,(

8

1

231 




j

iB

jjjj
jetsrATuu                (15) 

where 












,8,7,6,5,/)cossin(

4,3,2,1,/)cossin(

31

31

jcexext

jcexext
B

jjj

jjj

j



   (16) 

 is the angular frequency. Here subscripts 1,2,3,4 

respectively denote the quantities corresponding to incident 

qLD, qTD, qTM and qT wave whereas the subscripts 5, 6, 7 

and 8  respectively denote the corresponding reflected waves 

and  
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The expressions for 𝑎𝑗 , 𝑗 = 1,2, …… . . ,15 are obtained from 

the expressions for 𝑎𝑗 , 𝑗 = 1,2, …… . . ,15 are given in the 

equations (14) on substituting the values for 𝑝1 and 𝑝3.  

For incident qLD-wave: ,cos,sin 1311 epep    

                      qTD-wave: ,cos,sin 2321 epep 
 

                     
qTM-wave: ,cos,sin 3331 epep 

 

                     
 qT-wave: ,cos,sin 4341 epep     

For reflected qLD-wave: ,cos,sin 5351 epep    

For reflected qTD -wave: ,cos,sin 6361 epep  ;  
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for reflected qTM-wave: ,cos,sin 7371 epep  ; 

for reflected qT-wave: .cos,sin 8381 epep   

 

Here 84736251 ,,, eeeeeeee   i.e. the angle of 

incidence is equal to the angle of reflection, so that the 

velocities of reflected waves are equal to their corresponding 

incident wave’s i.e. .,,, 84736251 cccccccc   

VI. BOUNDARY CONDITIONS 

The boundary conditions at the thermally insulated surface 

03 x  are given by  
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where h is the surface heat transfer coefficient; 

 

ℎ → 0 corresponds to thermally insulated boundaries and 

ℎ → ∞ refers to isothermal boundaries.  
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The boundary conditions given by equation (18) must be 

satisfied for all values of 𝑥1 and 𝑡, so we have  

 

𝐵1(𝑥1, 0, 𝑡) = 𝐵2(𝑥2, 0, 𝑡) = ⋯… . . …… .= 𝐵8(𝑥8, 0, 𝑡)     

                                                                             (20) 

Then from equations (16) and (20), we have 
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          (21)                  

which corresponds to Snell’s law in present case and 

 

   ,............ 882211   ccc                  
(22) 

Making use of equations (15) in equation (19) and 

substituting it into thermally insulated boundary conditions 

(18), we obtain 
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Incident qLD-wave: 

In case of incident qLD- wave, 0432  AAA . Dividing 

the set of equations (23) throughout by 1A , we obtain a 

system of four non-homogeneous equations in four 

unknowns. Resulting equations can be solved by the Gauss 

elimination method which results in    

.)4,3,2,1(,
1

1

4 



  i

A

A
Z ii

i   (23) 

Incident qTD-wave: 

In the case of incident qTD- wave, 0431  AAA , thus  

).4,3,2,1(,
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Incident qTM-wave: 

In the case of incident qTM- wave, 0421  AAA and 

thus we have 
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Incident qT-wave: 

In the case of incident qT- wave, 0321  AAA , thus  
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where 
44

4


 iiA  and )4,3,2,14,3,2,1(  pip
i  can be 

obtained by replacing, respectively, the 1
st
 , 2

nd
 , 3

rd
 , 4

th
  

column of   by   .4321
T

pppp AAAA   

 

VII. NUMERICAL RESULTS AND DISCUSSION 

 In order to illustrate the theoretical results obtained in the 

preceding sections, we now present some numerical results. 

For numerical computation, we take the values for relevant 

parameters for transversely isotropic micropolar viscoelastic 

medium under the theory of thermoelasticity of type-II and 

type-III solid as: 
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Also, 

 𝐴11 = 𝐴′
11(1 + 𝑖 𝜔 𝑅1

−1), 𝐴77 = 𝐴′
77(1 + 𝑖 𝜔 𝑅2

−1),  

𝐴88 = 𝐴′
88(1 + 𝑖 𝜔 𝑅3

−1), 𝐴22 = 𝐴′
22(1 + 𝑖 𝜔 𝑅4

−1),  
𝐴12 = 𝐴′

12(1 + 𝑖 𝜔 𝑅5
−1), 𝐴78 = 𝐴′

78(1 + 𝑖 𝜔 𝑅6
−1),  
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𝐵44 = 𝐵′
44(1 + 𝑖 𝜔 𝑅7

−1), 𝐵66 = 𝐵′
66(1 + 𝑖 𝜔 𝑅8

−1), 
where  

𝑅1
−1 = 8.05, 𝑅2

−1 = 2, 𝑅3
−1 = 1.05, 𝑅4

−1 = 4.05,  

𝑅5
−1 = 2.05, 𝑅6

−1 = 7.05, 𝑅7
−1 = 2.05, 𝑅8

−1 = 4.05  
 

Following Gauthier [6] we take, the non-dimensional 

values for Aluminium epoxy like composite as  
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Graphical representation is given for the variations of 

amplitude ratios of reflected qLD, qTD, qTM and qT waves 

when four types of waves viz. qLD, qTD, qTM and qT waves 

are incident at the free surface to compare the results in two 

cases, one for the waves incident from transversely isotropic 

micropolar medium under the theory of thermoelasticity of 

type-II and type-III (MTIWED) and other from micropolar 

transversely isotropic viscoelastic material with energy 

dissipation (MVWED). In figures 1-4, the graphical 

representation is given for variations of amplitude ratios

21 , ZZ  , 3Z and 4Z  for incident qLD wave. Figures 5-8, 

9-12 and 13-16, respectively show the similar state in case of 

incident qTD, qTM, and qT waves. Here 21 , ZZ  , 3Z and 

4Z are, respectively, the amplitude ratios of reflected qLD, 

qTD, qTM  and qT wave.  

 

These variations are shown for three different angle of 

incidence viz., 𝜃 = 30𝑜 , 45𝑜 𝑎𝑛𝑑 90𝑜 . In these figures the 

solid lines corresponds to the case of MTIWED while the 

dotted lines corresponds to the case of MVWED. Also, the 

solid lines without center symbol, lines with center symbol 

(−0 − 0 −),  solid lines with center symbol (− × − ×
−), respectively, represent variations for 𝜃 = 30𝑜 , 𝜃 =
45𝑜 and 𝜃 = 90𝑜  in case on MTIWED, whereas the 

corresponding broken lines represent the same condition in 

the case of MVWED. 

 

A. Incident qLD wave  

 

It is observed from figure 1 that the amplitude ratio 1Z  of 

reflected qLD-wave first increases sharply to peak value and 

then decreases sharply to attain a constant value, when 

𝜃 = 45𝑜  for MTIWED. While, for all the other cases, its 

value initially increase and then oscillate to become constant 

ultimately. 
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Figure 1. Variation of Amplitude ratio |Z1|
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Figure 2. Variation of Amplitude ratio|Z2|
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Figure 2, 3 and 4 indicate the variations of amplitude 

ratio 2Z  , 3Z and 4Z of reflected qTD-wave which 

shows that for all the cases, the value of 2Z  , 3Z and 

4Z  initially oscillate with very small amplitude and then 

steadily increases with increase in frequency, for all the 

three angles of inclination. 
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Figure 3. Variation of Amplitude ratio|Z3|
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Figure 4. Variation of Amplitude ratio|Z4|
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B. Incident qTD wave  

The variation of amplitude ratios of various reflected 

waves for incident qTD-wave is shown in figures 5-8. The 

amplitude ratio 1Z sharply decreases to become constant 

for all the cases, with slight differences in their amplitudes, 

except for MVWED 𝜃 = 90𝑜 where after decreasing it 

oscillates and then attain a constant value. 
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Figure 5. Variation of Amplitude ratio|Z1|
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Figure 6. Variation of Amplitude ratio|Z2|
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Figure 7. Variation of Amplitude ratio|Z3|
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Figure 8. Variation of Amplitude ratio|Z4|
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It can be seen from figure 6 that the value of amplitude 

ratio 2Z for MTIWED shows a hump within the interval 

0 ≤ 𝜔 ≤ 20  and then oscillates to attain a constant value. 

At = 30𝑜, 90𝑜,its value initially decreases, then increases 

to become constant. However for MVWED, for all the 

angle of inclination, its value oscillates within the interval  

0 ≤ 𝜔 ≤ 10  and then become constant at the end. 

 

Figures 7 and 8 shows the variations of amplitude ratio 

3Z and 4Z keeps on increasing with increase in 

frequency. 

 

C. Incident qTM wave  

 

The variation of amplitude ratio 1Z initially oscillates 

within the interval (0, 20) for all the cases of MTIWED and 

then become constant with increase in frequency. Also, the 

values for MTIWED are higher as compared to those for 

MVWED. These variations are depicted in figure 9. 
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Figure 9. Variation of Amplitude ratio|Z1|
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Figure 10. Variation of Amplitude ratio|Z2|
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Figure 11. Variation of Amplitude ratio|Z3|
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Figure 12. Variation of Amplitude ratio|Z4|
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For the amplitude ratio 2Z  (figure 10) of reflected 

qTD-wave, for MTIWED and 𝜃 = 30𝑜, its value sharply 

increases to reach a maximum value and then decreases to 

attain a constant value at the end. While for 𝜃 = 45𝑜and 

𝜃 = 90𝑜 its value initially oscillates to become constant at 

the end. However for MVWED, its value oscillates with 

varying amplitude. 

 

Figure 11 shows that the curves for 3Z start with 

difference in their pattern of variation but end with almost 

similar type of variation. It can be seen from this figure that 

the value of 3Z shows the similar behavior for initial 

angle of incidence, while with increase in angle of 

incidence, its value shows the opposite behavior. 

 

It is observed from figure 12, that 4Z initially oscillate 

then show a sudden decrease at  𝜃 = 90𝑜 , goes on 

increasing with increase in frequency at 𝜃 = 45𝑜, while 

oscillate and then decreases to become constant at 

𝜃 = 30𝑜. The variations for the case of MVWED, start 

with oscillating behavior showing peaks at particular value 

of frequency and become constant at the end. It is observed 

that the values get increased with increase in angle of 

incidence. 

 

D. Incident qT wave  

 

The variations of amplitude ratios of various reflected 

waves for incident qT-wave are shown in figures 13-16. 

The amplitude ratio 1Z sharply decreases to become 

constant for all the cases, with slight differences in their 

amplitudes. 
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Figure 13. Variation of Amplitude ratio|Z1|
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The variations of 2Z and 4Z indicated in figures 14 

and 16. It can be seen from these figures that the values 

oscillate within the interval (0, 20), showing the peaks of 

different amplitudes. After this interval the values for all 

the cases become steady. 
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Figure 14. Variation of Amplitude ratio|Z2|
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Figure 15. Variation of Amplitude ratio|Z3|

0

10

20

30

40

50

A
m

p
li
tu

d
e

 R
a

ti
o

 |
Z

3
|

MTIWED(30)

MTIWED(45)

MTIWED(90)

MVWED(30)

MVWED(45)

MVWED(90)

 

0 20 40 60 80 100
Frequency

Figure 16. Variation of Amplitude ratio|Z4|
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Variations in the values of 3Z indicate that viscoelasticity as 

well as angle of incidence show a significant impact on it 

throughout the whole range (figure 15). The behavior of 3Z

oscillatory, within the range 0 ≤ 𝜔 ≤ 20  . The values of 

maximum with amplitude ratio 3Z first increase from small 

values to small oscillations and ultimately decrease to 

become steady. The values for MVWED are higher as 

compared to those for MVWED at 𝜃 = 30𝑜  𝑎𝑛𝑑 45𝑜, but the 

behavior is reversed with further increase in the angle of 

incidence. Viscoelasticity show a greater impact on iZ , 

i=1,2,3,4  as compared to the angle of incidence. 

 

VIII. CONCLUSION 

 

The analytic expressions of amplitude ratios for various 

reflected waves are obtained for the transversely isotropic 

micropolar viscoelastic medium under the theory of 

thermoelasticity of type-II and type-III. It is concluded 

from the graphs that the values of amplitude ratios 

21 , ZZ  and 3Z show sharp oscillations at initial 

frequencies for incident qLD and qTD waves, as compared 

to qTM and qT incident waves. An appreciable effect of 

viscoelasticity and angle of incidence is observed on 

amplitude ratios of various reflected waves. 
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