

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-3, July 2016

 91 www.erpublication.org

Abstract— This Paper emphasizes the learning of embedded

system's programming and design through porting of µCOS-II

on ARM Cortex M-3.This paper will help the engineering and

Embedded System students to start their projects and designing

of real time embedded system. It deals with the porting of

Micro COS-II in ARM based microcontroller for the

implementation of multitasking and time scheduling. Here the

real time operating system is the software that manages the time

of a micro controller to ensure that all time critical events are

processed as efficiently as possible. Different interface modules

of ARM Cortex M-3 microcontroller like LED, SYSTIC

TIMER, BUZZER, UART, LCD, ADC, SPI etc. are tested. This

paper mainly concentrates on the porting of µCOS-II.

Index Terms— Embedded systems, ARM Cortex M-3, KEIL

IDE and real time Kernel.

I. INTRODUCTION

 Engineering students study many subjects like

 Microprocessor

 Microcontroller

 Operating Systems

 Embedded Systems etc.

But they are not able to make use of all these things in real

time applications. And in fact it is not possible in very hectic

schedule of their college life to cover all the perspectives.

This paper inclusively will make them able to learn embedded

system and design real time application monitoring systems.

Reading this paper you will feel that you can confidently start

to work on real time systems and their design. I will make it

evident in detailed work of the paper using advanced

microcontroller and real time kernel.

The important trait of using real time kernel is

MULTITASKING.' Using a real time operating system we

can design real time systems performing multiple tasks

simultaneously like LED blinking/glowing, alarm,

temperature sensor, displaying LCD and serial

communication etc. Real time systems that are intensively

used in critical areas like space research and defense

applications etc. To realize an industrial real time application

Monitoring Systems. The heart of the system is a real time

kernel that uses preemptive scheduling to achieve

multitasking on any embedded platform.

Earlier systems are non-real time operating systems which are

often quite non-deterministic and slow responsiveness. So use

of real time operating system is just an overcome on non-real

 Nivesh Dwivedi, B.Tech/Electronics IV year, Hans Raj College,

University of Delhi.

time system which is based on performing mono-task

mechanism that hardly satisfies the current requirements(one

task) thus will cause more power consumption.

Related Works: - Already the porting of µCOS-II has been

done earlier but the thing is- Can we apply some different way

than to earlier? Yes, let’s try it some different way.

Earlier, porting of µCOS-II is given in Micrium 'µCOS-II and

ARM Cortex M-3'. They used IAR IDE and a different SOC. I

really appreciate the book and author. But this paper

intensively will give a constraint and whole idea to students to

work on embedded system and its design.

Detailed Works: - To complete this project we need to have

the knowledge of the followings-

1. ARM Cortex M-3 and its peripherals.

2. Familiar with Keil IDE.

3. µCOS-II, Real Time Operating System.

1. ARM Cortex M-3

What Is the ARM (advance RISC machine) Cortex M-3?

The microcontroller market is very vast. A bewildering array

of vendors, devices, and architectures is competing in this

market. The requirement for higher performance

microcontrollers has been driven globally by the industry’s

changing needs; for example, microcontrollers are required to

handle more work without increasing a product’s frequency or

power. In addition, microcontrollers are becoming

increasingly connected, whether by Universal Serial Bus

(USB), Ethernet, or wireless radio, and hence, the processing

needed to support these communication channels and

advanced peripherals are growing. Similarly, general

application complexity is on the increase, driven by more

sophisticated user interfaces, multimedia requirements,

system speed, and convergence of functionalities.

The Cortex-M3 is a 32-bit microprocessor. It has a 32-bit data

path, a 32-bit register bank, and 32-bit memory interfaces.

The processor has a Harvard architecture, which means that it

has a separate instruction bus and data bus. This allows

instructions and data accesses to take place at the same time,

and as a result of this, the performance of the processor

increases because data accesses do not affect the instruction

pipeline. This feature results in multiple bus interfaces on

Cortex-M3, each with optimized usage and the ability to be

used simultaneously. However, the instruction and data buses

share the same memory space (a unified memory system). In

other words, you cannot get 8 GB of memory space just

because you have separate bus interfaces. For complex

applications that require more memory system features, the

Cortex-M3 processor has an optional Memory Protection

Unit (MPU), and it is possible to use an external cache if it’s

required. Both little endian and big endian memory systems

are supported. The Cortex-M3 processor includes a number

of fixed internal debugging components. These components

provide debugging operation supports and features, such as

breakpoints and watch points. In addition, optional

Learning Embedded System using advanced

Microcontroller and Real Time Operating System

Nivesh Dwivedi

Learning Embedded System using advanced Microcontroller and Real Time Operating System

 92 www.erpublication.org

components provide debugging features, such as instruction

trace, and various types of debugging interfaces.

ARM cores use a 32-bit, Load-Store RISC architecture. It

means that the core cannot directly manipulate the memory of

system. All data manipulation must be done by loading

registers with information located in memory, performing the

data operation and then storing the value back to memory.

The Cortex-M3 processor has registers R0 through R15.

R0–R12 are 32-bit general-purpose registers for data

operations. Some 16-bit Thumb instructions can only access a

subset of these registers (low registers, R0–R7). The

Cortex-M3 contains two stack pointers (R13). They are

banked so that only one is visible at a time. The two stack

pointers are follows-

• Main Stack Pointer (MSP): The default stack pointer, used

by the operating system (OS) kernel and exception handlers.

• Process Stack Pointer (PSP): Used by user application code.

R14 (The link register): - When a subroutine is called, the

return address is stored in the link register.

R15 (The program Counter):- The program counter is the

current program address. This register can be written to

control the program flow.

Special registers: The Cortex-M3 processor also has a

number of special registers. They are as follows-

• Program Status Register (PSRs)

•Interrupt Mask registers (PRIMASK,

FAULTMASK, and BASEPRI)

• Control registers (CONTROL)

These registers have special functions and can be accessed

only by special instructions. They cannot be used for normal

data processing.

Fig.1:- A Simplified View of ARM Cortex M-3

The Cortex-M3 addresses the requirements for the 32-bit

embedded processor market in the following ways-

Greater performance efficiency, Low power consumption,

enhanced determinism, improved code density, Ease of use,

Lower cost solutions, Wide choice of development tools

These above are the merits that make ARM Cortex m-3

suitable for our porting purpose.

The Cortex-M3 processor is based on one profile of the v7

architecture, called ARM v7-M, an architecture specification

for microcontroller products. Cortex-M3 supports only the

Thumb-2 (and traditional Thumb) instruction set. Instead of

using ARM instructions for some operations, as in traditional

ARM processors, it uses the Thumb-2 instruction set for all

operations.

The details of the ARMv7-M architecture are documented in

The ARMv7-M Architecture Application Level Reference

Manual. This document can be obtained via the ARM web

site through a simple registration process. The ARMv7-M

architecture contains the following key areas:

• Programmer’s model

• Instruction set

• Memory model

• Debug architecture

Processor-specific information, such as interface details and

timing, is documented in the Cortex-M3 Technical Reference

Manual (TRM). This manual can be accessed freely on the

ARM website.

Cortex-M3 Processor Applications

With its high performance and high code density and small

silicon footprint, the Cortex-M3 processor is ideal for a wide

variety of applications as-

• Low-cost microcontrollers

• Automotive

• Data communications

• Industrial control

• Consumer products

There are already many Cortex-M3 processor-based products

on the market, including low-end

Products priced as low as US$1, making the cost of ARM

microcontrollers comparable to or lower than that of many

8-bit microcontrollers.

II. KEIL IDE SOFTWARE

Keil IDE is a windows operating system (os) software

program that runs on a PC to develop applications of ARM

microcontroller and digital signal controller.

It is also called Integrated Development Environment or IDE

because it provides a single integrated “environment” to

develop code for embedded microcontroller.

The Keil compiler is the industry standard and supports more

than 500 current 8051 device variants. Now, Keil software

offers development tools for ARM.

 Keil Software, world's leading developer of Embedded

Systems Software, makes ANSI C compilers, macro

assemblers, real-time kernels, debuggers, linkers, library

managers, simulators, integrated environments, and

evaluation boards for the 8051, 251, ARM7, and C16x/ST10

microcontroller families. Keil Software implemented the first

C compiler designed from the ground-up specifically for the

8051 microcontroller.

Keil development tools offer a complete development

environment for ARM Cortex-M, and Cortex-R

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-3, July 2016

 93 www.erpublication.org

processor-based devices. They are easy to learn and use, yet

powerful enough for the most demanding embedded

applications.

 In this project i will use keil IDE software micro Vision-5.

III. µCOS-II

Introduction: - µCOS-II (pronounced "Micro C O S 2") stands

for Micro-Controller Operating System Version 2. µCOS-II is

upward compatible with µCOS (V1.11) but provides many

improvements over µCOS such as the addition of a

fixed-sized memory manager, user definable callouts on task

creation, task deletion, task switch and system tick, supports

TCB extensions, stack checking and, much more.

If you currently have an application (i.e. product) that runs

with µCOS, your application should be able to run, virtually

unchanged, with µCOS-II. All of the services (i.e. function

calls) provided by µCOS have been preserved. You may,

however, have to change include files and product build files

to ‘point ’to the new file names. µCOS-II was developed and

tested on a PC; µCOS-II was actually targeted for embedded

systems and can easily be ported to many different processor

architectures.

It is a very small real-time kernel with memory footprint is

about 20KB for a kernel with full functions and source code is

about 5400 lines, mostly in ANSI C. Source code for µCOS-II

is free but not for commercial purpose. If you want to use it as

commercial purpose, you have to take permission.

Selecting µCOS-II: - There are the following features which

make µCOS-II suitable/convenient to port-

 Portable

 ROMABLE

 Scalable

 Preemptive

 Multi-tasking

 Deterministic

 Task stacks

 Services

 Interrupt Management

 Robust and reliable

 PORTING OF µCOS-II

Adapting a real-time kernel to a microprocessor or a

microcontroller is called a port. Most of µCOS- II is written in

C for portability; however, it is still necessary to write some

processor specific code in C and assembly language.

Specifically, µCOS-II manipulates processor registers which

can only be done through assembly language.

Porting µCOS -II to different processors is not so much

difficult task only because µCOS -II was designed to be

portable.

If you are going to port µCOS-II for your processor, of course

you need to know how µCOS-II’s processor specific code

works.

A processor can run µCOS-II if it satisfies the following

requirements:

1. You must have a C compiler for the processor and the C

compiler must be able to produce reentrant code.

2. You must be able to disable and enable interrupts from C.

3. The processor must support interrupts and you need to

provide an interrupt that occurs at regular intervals (typically

between 10 to 100 Hz).

4. The processor must support a hardware stack, and the

processor must be able to store a fair amount of data on the

stack (possibly many Kbytes).

5. The processor must have instructions to load and store the

stack pointer and other CPU registers either on the stack or in

memory.

ARM Cortex M-3 satisfies all the above requirements so we

can easily port µCOS-II in it.

Porting µCOS -II is actually quite straightforward once you

understand the subtleties of the target processor and the C

compiler you will be using.

If your processor and compiler satisfy µCOS -II’s

requirements, and you have all the necessary tools, porting

µCOS-II consists of the followings-

1. setting the value of 1 #define constants (OS_CPU.H)

2. Declaring 10 data types (OS_CPU.H)

3. Declaring 3 #define macros (OS_CPU.H)

4. Writing 6 simple functions in C (OS_CPU_C.C)

5. Writing 4 assembly language functions

(OS_CPU_A.ASM)

All the source codes, you need not to write by your own but

you should understand its working functionality well. These

source codes are easily available so you can use these directly

on your initial stage of porting because these are the processor

independent codes. You need to work on processor dependent

codes and your application codes. Also you have to add

‘INCLUDES.H’.

INCLUDES.H allows every .C file in your project to be

written without concerns about which header file will actually

be needed.

Depending on the processor, a port can consist of writing or

changing between 50 and 300 lines of code.

Starting and Initializing µCOS-II

a. Starting µCOS-II: - µCOS-II starts in the same way as

shown in the fig.2. First we will initialize both the hardware

and software .Here the hardware i have used is the ARM

Cortex M-3 and software is the real time operating system

µCOS-II. The resources are allocated for the tasks defined in

the application then the scheduler is started and it schedules

the tasks in pre-emptive manner.

b. Initialization of µCOS-II: - The steps to initialize µCOS-II

are shown in Fig.3. We will follow the corresponding steps to

initialize it.

The Steps we will take to initialize µCOS-II through

programming is shown below-

Void main (void)

 {

 /* User initialization*/

 OSInit (); /* kernel initialization */

 /* Start OS*/

 OSStart (); /* start multitasking */

 }

Learning Embedded System using advanced Microcontroller and Real Time Operating System

 94 www.erpublication.org

Fig. 2:- Starting of µCOS-II

Creating Task:- For multitasking , the µCOS-II needs to have

information about the task, its starting address, top-of-stack

(TOS), priority, arguments passed to the task etc.

 You can create a task by calling a service provider by

μCOS-II in the following way-

OStaskCreate (void (*task) (void *parg),Void *parg); //

Address of Task

OS_STK *pstk; // Pointer to task’s Top of Task

INT8U prio); // Priority of task (0--64)

You can create the task before you start multitasking (at

initialization time).

Fig. 3:- Initializing µCOS-II

IV. ARCHITECTURE

In every embedded systems, there is a board support

package (BSP) for a given board. It is commonly built with

a boot loader that contains the minimal device support to load

the operating system and device drivers for all the devices on

the board. It can provide a root file system, a tool chain

for making programs to run on the embedded system

(which would be part of the architecture support package),

and configurations for the devices.

Hardware and Software Architecture:-Given fig. 4 shows a

block diagram of the relationship between your application,

µCOS-II, the µCOS-II port, the BSP (Board Support

Package), the ARM Cortex-M3 CPU and the target hardware.

APP.C is a standard test file for µCOS-II. APP.C would be

where you would place main() but, of course, you can place

main()anywhere you want.

The two important functions are-

1. Main () and

2. AppStartTask ()

Function main ():-

void main (void)

{

#if OS_TASK_NAME_SIZE > 13

 INT8U err;

#endif

BSP_IntDisAll ();

OSInit ();

OSTaskCreateExt (AppStartTask,

 (void *) 0,

 (OS_STK *)&AppStartTaskStk

[APP_TASK_START_STK_SIZE-1],

APP_TASK_START_PRIO,

 (OS_STK *)&AppStartTaskStk [0],

APP_TASK_START_STK_SIZE,

 (void *) 0,

 OS_TASK_OPT_STK_CHK |

OS_TASK_OPT_STK_CLR);

#if OS_TASK_NAME_SIZE > 11

 OSTaskNameSet (APP_TASK_START_PRIO, "Start

Task", &err);

#endif

OSStart ();

}

AppStartTask ():-

static void AppStartTask (void *p_arg)

{

 (void) p_arg;

BSP_Init ();

OS_CPU_SysTickInit ();

#if OS_TASK_STAT_EN > 0

 OSStatInit ();

#endif

AppTaskCreate ();

While (TRUE) {

 /* Do something ‘useful’ in this task */

LED_Toggle (1);

OSTimeDly (OS_TICKS_PER_SEC / 20);

 }

}

Once you have a port of µCOS-II for your processor, you will

need to verify its operation. Testing a multitasking real -time

kernel such as µCOS-II is not as complicated as you may

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-3, July 2016

 95 www.erpublication.org

think. You should test your port without application code. In

other words, test the operations of the kernel by itself. Also

you can test it by checking whether context switching is

happening or not on your Register window in KEIL IDE.

There are two reasons to do this. First, you don’t want to

complicate things any more than they need to be. Second, if

something doesn’t work, you know that the problem lies in the

port as opposed to your application. Start with a couple of

simple tasks and only the ticker interrupt service routine.

Once you get multitasking going, it’s quite simple to add your

application tasks.

Figure 4:- Relationship between modules.

V. IMPLEMENTATION

The Real Time Kernel is the most important thing in any real

time system that does pre-emtive scheduling to perform

multitasking which is the real trait of RTOS. This research

paper emphasizes the implementation of hardware and

software together.

In µCOS-II maximum 64 tasks we can perform

simultaneously but here we have six tasks in fig.5 shown

below.

Fig.5:- Implementation of hardware and software.

Depending on our requirement we can vary the number of

tasks at a time. Here, to verify our porting of µCOS-II we can

perform several tasks like LED blinking, Systick Timer,

Buzzer (we can generate desired music or alarm), UART,

Displaying LCD etc. We can also perform many projects Like

Home automation using Bluetooth and UART together ,

Noticeboard display using Bluetooth, LCD and UART

together etc. But it is enough to perform two-three tasks to test

porting of our µCOS-II. Thus we can port µCOS-II using

development tools i.e. ARM Cortex M-3 and KEIL IDE.

VI. CONCLUSION

In this Research paper the porting of a real time operating

system µCOS-II on ARM Cortex M-3 using software keil

µvision-5 is presented. It mainly concentrates on

development of an embedded monitoring system using ARM

Cortex M-3 and Real Time Kernel. All the steps taken while

porting the µCOS-II and implementation thesis are provided

in the paper. The paper gives a detailed overview that will

help the students to develop and design an embedded

monitoring system using ARM cortex M-3 and Real time

operating system .

ACKNOWLEDGEMENT

I would like to acknowledge the Centre for Development and

Advance Computing (C-DAC), Hyderabad, Govt. of India

and their faculties to train and inspire for the work. I would

also like to place on record my sincere thanks and gratitude to

Shri Sanjay Kr. Vyas Scientist 'E' / Additional Director, HRD

Division, Dept. of Electronics and Information Technology

(DeitY), Ministry of Communication and IT, govt. of India for

his continuous guidance and support for my project work.

REFERENCES

[1] Micrium µC/OS-II for the ARM Cortex-M3 Processors and

www.micrium.com

[2] www.arm.com

[3]µCOS-II, The Real Time Kernel, and http://www.uCOS-II.com

[4] Design of µC/ Os II RTOS Based Scalable Cost Effective Monitoring

System Using Arm Powered Microcontroller, M. Venkateswara Rao,

Dept. of ECM, K L University, A.P, India.

[5]Jean J Labrosse, MicroC/OS-II the Real-Time Kernel, Second Edition

Beijing University of Aeronautics and Astronautics Press.

[6]Tianmiao Wang the Design and Development of Embedded System

Based on ARM Micro System and µC/OS-II Real-Time Operating

System Tsinghua University Press.

[7]The Definitive Guide to the ARM Cortex M-3, second edition by

Joseph Yiu.

Nivesh Dwivedi, currently pursuing B.Tech Electronics

IV year from Hans Raj College, University Of Delhi. His Current interest is

to work in the field of Embedded Systems and Digital Image Processing.

Currently He is also working on a project "Image Registration using two

stereo Camera" with Helium Ink Company, Pune. He has been awarded by

Mr Akhilesh Yadav, Chief Minister of U.P. with 'Award of Excellence' for his

excellent performance in XII class. He is very active to participate in

technical Seminars, Workshops as well as extracurricular activities.

www.micrium.com
www.arm.com
http://www.ucos-ii.com/

