
                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-2, June 2016 

                                                                                                  177                                                                     www.erpublication.org 

 

 

Abstract— Proteins are responsible for important processes 

in living organisms. Nowadays, the data about proteins is 

massive, but being able to observe an unknown protein and 

determine its function is still challenging. One form of 

understanding a protein is classifying it, since proteins in the 

same class or family share similar purposes. A tool named 

GAMBIT implements a Genetic Algorithm that analyses 

already classified proteins in order to find characteristic 

patterns and provide assistance to automatic classification.  

Genetic Algorithms work guided by many parameters that must 

be tuned for better results. A strategy of evaluating the results 

achieved from various configurations of those parameters is 

presented, as well as the one that was considered the best. 

 

Index Terms— Data Mining, Evolutionary Computation, 

Genetic algorithms, Genetic operators.  

 

I. INTRODUCTION 

  Proteins were discovery in 1838 by Berzelius and Mulder, 

and were named like that by the derivation of the Greek word 

proteios that means, “standing in front” (TANFORD and 

REYNOLDS, 2001). Berzelius justified the name by stating 

that such a molecular structure plays the leading role in animal 

nutrition, in order to emphasize its importance for life. 

Proteins work as biological automata and are responsible 

for several functions in living organisms such as sustentation, 

regulation, increase of reaction speed and others. The 

building blocks of proteins are molecules named amino acids. 

There are 20 different kinds of amino acids present in 

proteins, which are made of a sequence of those. The 

molecular structure of a protein presents a spacial shape, but 

such a 3D layout may be abstracted and only the amino acids 

sequence is enough to understand the protein’s function. The 

sequence of amino acids of a protein is also called protein´s 

polypeptide chain. Such a sequence is also often referred as 

the protein’s primary structure and is inextricably linked to its 

function (LEHNINGER, NELSON and COX, 2012). 

Proteins are organized in groups with similar or related 

functions. Those groups are sometimes named as classes or 

families. Being able to assign a class to a just discovered 

protein helps to predict or understand what is the function of 

such a protein (LEHNINGER, NELSON and COX, 2012; XU 

and DUNBRACK, 2012). 

Genome-sequencing technology has produced a huge 

amount of data about proteins. However, there are a large 

number of proteins whose function is unknown. Hence, an 

active research area consists of predicting proteins’ functions 
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based on their primary sequences. Despite the existence of 

several methods that try to solve the protein function 

prediction problem, it still remains one of the main challenges 

in the current post-genomic era. 

Many existing methods are being experimented to 

approach the problem of protein classification (which means, 

to assign an already known class to a still unclassified 

protein), such as Decision Trees, Neural Networks, Support 

Vector Machines (FARIA, FERREIRA and FALCÃO, 2009), 

Naïve Bayesian and Random Forest (IQBAL  et al, 2014). 

Among them, there are the Evolutionary Computation 

algorithms and a particular kind of evolutionary method is the 

Genetic Algorithm (GA) (GOLDBERG 1983; 1989). 

This paper presents a product named GAMBIT (Genetic 

Algorithm-based Motif Browsing and Identification Tool), 

that uses a GA particularly implemented to work on the 

so-called Protein Classification Problem (PCP). 

Any GA uses many parameters that govern the way it 

behaves to cover the space of solutions and one step of the 

process of evaluating how well such an algorithm performs on 

its task is the parameter tuning. It’s not different for 

GAMBIT. 

It’s important to stress that this paper focus on the particular 

step of parameter tuning and shows what are the parameters 

used by GAMBIT during a run and how they were discovered 

to maximize GAMBIT’s results quality.  

It´s not the intention of this paper to go deep in the design 

decisions or implementation details of the GA present in 

GAMBIT. Such content will be object of another paper. This 

one is organized as follows: section II presents the definitions 

of the problem that GAMBIT tackles (the Protein 

Classification Problem), section III presents a brief 

explanation on Genetic Algorithms, the technology used by 

GAMBIT, section IV presents the GAMBIT's approach to 

tackle the above mentioned problem, section V presents the 

datasets used during both training and testing phases, section 

VI presents the experiments methodology used during the 

parameter tuning of  GAMBIT, section VII presents the 

quality criteria used when comparing the experiments results, 

section IIX presents the experiments and their results, section 

IX presents the conclusions gathered from the experiments 

performed and the last section presents the references. 

II. THE PROTEIN CLASSIFICATION PROBLEM 

Proteins are organized in families or classes, which are 

groups of proteins with similar functions (XU and 

DUNBRACK, 2012). Being able to assign a class to a newly 

discovered protein helps to understand its function in a certain 

organism. The problem is to know which class is that. 

The primary structure of a protein is the simple sequence of 

its containing amino acids. The amino acids may be 
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represented by letters (LEHNINGER, NELSON e COX, 

2012), so a primary structure of a protein is represented by a 

string of those letters, each one being an amino acid. This is 

usually referred in literature as Amino-Acid Sequence (AAS). 

Under this conception, one example of a not so big protein 

could be RLQQWRKAALVLNASRRFRYTLDLK. This 

protein is named 2M73 and its class is known as 

HYDROLASE. It is a particular kind of protein, an enzyme, 

and because that it also follows an enzyme classification 

system, under which its class is EC.3.6.3.8. 

In terms of proteins, similar function means similar 

structure (LEHNINGER, NELSON e COX, 2012). One 

approach to try to classify a certain protein into a class is to 

find pieces of its primary structure and check which class is 

characterized by those pieces. 

Computationally speaking, the problem is to identify which 

substrings characterize each class and then try to match those 

patterns in a still unclassified protein.  This corresponds to use 

what is called a sequential model representation of the 

proteins, rather than a discrete model one (NANNI, LUMINI 

and BRAHNAM, 2014). 

In many occasions, several researchers used the so-called 

alignment matrices to identify the presence of AAS in 

proteins. However, recent works have preferred to not use 

such matrices in order to avoid error propagation problems 

(FARIA, FERREIRA and FALCÃO, 2009). 

Also, the uses of the alignment matrices, like PAM and 

BLOSUM have a severe impact in performance, what was 

another reason to avoid those (IQBAL et al, 2014). 

III. GENETIC ALGORITHMS 

 

Like other evolutionary algorithms, a GA is a search and 

optimization method inspired by the principle of natural 

selection in biological evolution (MITCHELL, 1997).  

GAMBIT implements a GA especially designed to work on 

the PCP. As any GA, GAMBIT works by transforming a 

number of candidate solutions (not a single one) from a state 

where they do not solve the problem to a state where they are 

considered good enough to work as a solution, under some 

criteria. Among the various highly enhanced candidates, at 

least one is expected to have the qualities to solve the original 

problem. As a GA, GAMBIT does not pursue the optimal 

solution, but a solution with an acceptable level of quality. 

As any GA, GAMBIT starts by producing a random set of 

candidates, in GA vernacular, a population of individuals. 

The next step is to transform the original candidates into 

better ones (evolution), by applying what are called genetic 

operators and then producing a second population. 

Since the process starts from one population and produces 

a second one from it, it’s said that the second population is the 

next generation of the original one. The same process is 

repeated, producing generation after generation until a certain 

stop criterion is reached, like a specific number of 

generations. 

The genetic operators are used to select individuals in one 

generation and evolve them to produce the following 

generation. Typically, the operations are mutation (that 

simply randomly changes an individual into another), 

crossover (that takes two individuals and mix their parts 

together to produce another pair or individuals) and 

reproduction (an individual is just send from one generation 

to the next, unchanged). Which operator is to be applied over 

a given individual during the evolution of a population is 

determined by probabilities established as GA parameters. 

The individual that is selected and submitted to a genetic 

operator in order to produce another is called an ancestor and 

the newly created one, its offspring. 

After a new generation is produced, it is necessary to 

measure its evolution to ensure that at least a few individuals 

really evolved towards the optimal solution. When evaluating 

and guiding the evolution process, the GA uses a fitness 

function. Such a function measures the quality of an 

individual and produces a grade to it. For instance, an 

individual with no quality at all will evaluate to 0, while the 

optimum solution will evaluate to 1. If an individual in one 

generation (ancestor) has a fitness of 0.324 and after a 

mutation it becomes another individual (offspring) with its 

fitness measured as 0.456, the genetic operation resulted in an 

improvement of the individual, getting it closer to the optimal 

solution (evolution). 

So, the general behavior of a GA is to evolve a population 

over generations by randomly selecting individuals from one 

population, operate over them with mutation, crossover and 

reproduction (again randomly selected), produce a new 

generation and measure the evolution process with the fitness 

function, to start over again from this newly generated 

population. When an individual reaches the threshold of an 

acceptable fitness (a minimum quality), a solution is found 

and the process terminates. 

 

IV. GAMBIT’S APPROACH 

 

GAMBIT aims to find a number of amino acid sequences, 

from now on named motifs, also named as features in 

literature (IQBAL et al, 2014), that highly characterize a 

certain class but does not the others. For instance, suppose the 

motif AABADCGGAB (an amino acid sequence) exists in all 

the proteins of EC.1 class, but absolutely in none of the other 

five classes (EC.2 to EC.6, explained later). This would be an 

absolutely discriminating motif, able to be used to determine 

if a so far unknown protein should or not be classified as 

EC.1. 

Unfortunately, experience shows that there is not a single 

motif with such a discrimination power. That’s why GAMBIT 

looks for a set of motifs to characterize a certain protein class 

instead a single one. 

GAMBIT builds and evolves populations of motifs (motifs 

are the GA individuals) and calculates their quality by using a 

function to evaluate its discrimination rate (the fitness 

function). The absolutely discriminating motif, if it existed, 

would have its fitness evaluated to 1. 

The fitness function used by GAMBIT is given by the 

presented equation where: 

F(i,m) is the relative frequency rate of the motif m in the i-th 

class; the relative frequency rate is given by dividing the count 

of proteins that present the motif by the total count of the 

proteins in the considered class; 

n is the total count of classes; 

k is the total count of classes that has at least one occurrence 

of the motif m; 

j is the index of all complementary classes to the i-th class. 
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The interpretation of such a function becomes easy with an 

example. Suppose the motif LGA occurs in 30% of the 

proteins in class EC.3, 12% in class EC.1, 7% in class EC.6 

and 0% in the other three classes (EC.2, EC.4 and EC.5). 

When calculating the fitness for the assignment of the motif to 

EC.3, the calculations result in F(3,LGA) = 0.3 and the 

average of all other frequencies (F(1,LGA)=0.12 and 

F(6,LGA)=0.07) result in 0.095 ((0.12 + 0.07) / 2). In the 

formula, those values give 

Fitness(3,LGA)=0.3(1-0.095)=0.2715. So, the fitness of 

motif LGA, when it is considered as a characterizing motif for 

EC.3, is 0.2715. 

GAMBIT promotes the evolution of the populations along 

generations and, at each one, selects the individuals (motifs) 

that better discriminate a certain protein class among the 

others (highest fitness for a certain class). At the end, 

GAMBIT associates a number of motifs to each of the 

existing protein classes in the experiment. 

Hence, what GAMBIT produces is a set of motifs that, 

when considered together, should characterize the protein 

class to which it is associated. 

Sometimes, a certain motif presents a non-zero fitness for 

more than one class. In such a case, the motif is assigned to the 

class where it computes the higher fitness. This approach 

means that GAMBIT is a single-label (or single-class) 

classifier, that uses the one-against-all labeling scheme 

(WANG and YAO, 2012). 

 

V. THE INPUT DATASET 

GAMBIT works by using a number of already classified 

proteins as input in order to discover which set of motifs 

better discriminates their classes.  

There are several protein databases available for public 

access like PDB (Protein Data Bank), PIR (Protein 

Information Resource), SCOP (Structural Classification of 

Proteins Database) and SWISS-PROT (ABOLA, 

SUSSMAN, PRILUSKY et al, 1997; BERMAN, 

WESTBROOK, FENG et al, 2000). 

PDB was selected because it provides not only the primary 

structure of proteins, but also secondary and tertiary structure 

annotations (XU and DUNBRACK, 2012), which are out of 

the scope of this paper. However, future research will include 

the use of the additional data present in PDB in more 

advanced versions of GAMBIT, so PDB was considered the 

best choice even at this time of the work. 

PDB presents a large (hundreds of thousands) and 

continuously increasing amount of proteins. For the purposes 

of GAMBIT, not all of those proteins were used, but only a 

particular group, namely, the enzymes. 

Experiments were performed over a set of 37,597 enzymes 

extracted from PDB. Enzymes present a hierarchical 

classification system, the Enzyme Commission Number, or 

simply EC Number. In the first level there are six classes 

(EC.1, EC.2, EC.3, EC.4, EC.5 and EC.6, named respectively 

Oxidoreductase, Transferase, Hydrolase, Lyase, Isomerase 

and Ligase) (MCDONALD, BOYCE, TIPTON, 2001), 

each of those is subdivided until the fourth level (for instance, 

the already presented enzyme 2M73 is a HYDROLASE also 

classified as EC.3.6.3.8). 

GAMBIT uses a particular input file (the “.data” file) that is 

directly generated from items present in PDB. Such an input 

file was generated from the 20150102 snapshot of PDB 

(produced at January 2nd, 2015), freely available and found at 

ftp://snapshots.rcsb.org/20150102/pub/pdb/data/struct

ures/, which was the most up to date one when the 

experiments took place. 

GAMBIT operates on the primary structure only, but PDB 

files contain much more on each protein, what required a 

preprocessing phase. Such a preparation process consisted in 

a) downloading all the “.gz” files (each one containing a 

single protein structure), b) extracting the “.ent” file, c) 

scanning the “.ent” file to extract the primary structure, 

protein class and d) saving a single file that contains all the 

proteins found (GAMBIT “.data” file), described as the 

amino acid sequence, the protein’s name and the protein’s 

class. 

A PDB “.ent” file is a text file in which each line is a record. 

There are many kinds of records and they are identified by a 

tag. After that tag, the content of each line has a specific 

meaning. For GAMBIT’s purposes, only the records tagged 

as HEADER (provides the name and class of the protein), 

COMPND (provides the EC class, if the protein is an enzyme) 

and ATOM (provides each of the amino acids present in the 

protein) are important. 

 

VI. EXPERIMENTS METHODOLOGY 

A typical GA uses a number of parameters that have deep 

influence over its performance and effectivity. Such 

parameters are sensible to particular circumstances of the data 

when the search is being performed. Hence, the first part of 

the experiment was to find a good (ideally the best) set of 

those parameters. 

GAMBIT uses the following parameters to control the 

process of looking for discriminating motifs: 

 Hill Climbing probability, that controls the 

evolution pressure and establishes the minimum 

amount of individuals that must increase in fitness 

during each generation; 

 Mutation and Crossover probability, that control 

the amount of each kind of genetic operator happen 

during the evolution of a generation; 

 Reproduction probability, determines how many 

individuals in a generation are replicated unchanged 

to the next; 

 Selection rate, that uses a stochastic tournment to 

select which individuals of a population will be 

subjected to the evolution process; this rate 

represents a percentile of the population with the 

higher fitness from where the evolution candidates 

will be selected; 

 Population size, that stablishes the number of 

individuals in each generation; 

 Motif count per class, that determines how many 

motifs will be used to characterize each class; only 

the ones with higher fitness are considered, even 

when more exist; 

 Number of generations, that establishes how many 

generations will occurbefore the process stops. 
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A methodology to experiment and measure the influence of 

those parameters was devised and applied, consisting in a set 

of experiments and results comparisons. As already 

mentioned, only enzymes were considered in this process. 

The protein base was divided in two mutually excluding 

parts: the one used to perform a process of training 

corresponds to 2/3 of all enzymes (25,084) and is called the 

training set. The remaining 1/3 (12,513) was dedicated to a 

testing process and is named the test set. 

The training set (25,084 proteins, 2/3 of all the proteins) 

was submitted to GAMBIT that resulted in a number of motifs 

assigned to each class. Those motifs were then used to 

perform a classification process of the proteins in the test set 

(12,513 proteins, 1/3 of all the proteins). The evaluation of the 

classification performance over the test set was used as 

comparison factor among the various parameter 

combinations, in order to find the best one. 

Only the first level of the EC classification was used in 

these experiments, so all the enzymes are distributed in six 

classes. The count of the proteins in each class of each set is 

presented in Table 1. 

Table 1: Protein classes distributions in training and test 

datasets 

Class Training Test Total 

EC.1 – Oxidoreductase 4,394 2,178 6,572 

EC.2 – Transferase 7,796 3,886 11,682 

EC.3 – Hydrolase 9,009 4,504 13,513 

EC.4 – Lyase  1,912 959 2,871 

EC.5 – Isomerase  1,138 567 1,705 

EC.6 – Ligase 835 419 1,254 

Total 25,084 12,513 37,597 

 

Table 1 shows that classes are unbalanced, presenting very 

different sizes among themselves. The size difference 

between EC.6 (1,254 proteins) and EC.3 (13,513 proteins) is 

remarkable. 

The strategy was to establish a set of values to all the 

parameters used by GAMBIT and execute it.  Only one 

parameter is tested at a time. For instance, when testing for 

Hill Climbing, all the other parameters were fixed to certain 

values and experiments using 10%, 40% and 70% took place. 

For each value, GAMBIT was executed three times. 

For each time, the resulting motifs were used to generate a 

WEKA input file (an “.arff” file), which was submitted to 

WEKA J48 method. The results provided by J48 at each time 

were used to calculate an average performance measure and 

the corresponding standard deviation.  

The average performances of each set of parameters were 

compared together and the set of parameters with higher 

performance was kept for the next set of tests that would focus 

on some other parameter. 

The same process was repeated for each of the parameters 

until all were covered and measured, what produced what was 

considered the best values for all the parameters of GAMBIT. 

WEKA J48 method is an implementation of C4.5 

classification algorithm (QUINLAN, 2014), that produces a 

decision tree derivated from the evaluation of the input file 

(WANG and YAO, 2012). After generating the decision tree, 

WEKA validates it by calculating the hit rate and then 

provides a confusion matrix. For GAMBIT purposes, J48 was 

configured to run a 10-fold cross validation test (KOHAVI, 

1995). 

When generating the WEKA input file, GAMBIT 

considers each of the motifs assigned to a class as an attribute, 

that can be valued either 0 or 1. For each protein, the set of 

attributes that are supposed to characterize its class receive 

the value 1 and the others the value 0. Each protein generates 

one line in the “.arff” file consisting of values for those 

attributes for the protein’s class. That is the file processed by 

J48. 

Finally, the process is made more reliable by assigning a 

new random seed when producing the initial generation of 

each run. 

VII.  QUALITY CRITERIA 

Since the idea is to find a good set of parameters to use in 

future experiments over the test set, it’s a need to determine 

some kind of performance comparison so it will be possible to 

determine which settings provide better results and therefore 

should be kept. 

Such a performance factor (named from now on as 

Performance or simply Pf) is calculated as the product of 

Specificity (Sp) by Sensitiveness (Sn) (LOPES, 1996). 

Hence, experiments with higher Pf values as results determine 

the parameter set to be used in the next experiments. Pf is 

preferred over hit rate because it better fits distributions of 

unbalanced classes (HAND, 1997).  
Sp and Sn are calculated directly from the Confusion 

Matrix delivered by WEKA, in the execution report generated 

by J48. Since WEKA also gives the hit rate (HRate), which is 

preserved and presented in all result tables, for a comparison 

with Pf. 

 

VIII. EXPERIMENTS FOR PARAMETER TUNING 

The parameter tuning had to start with some initial set of 

parameter values. The initial values for the GAMBIT 

parameters were set as follows: a) Hill Climbing probability: 

10%; both mutation and crossover probabilities: 45%; 

Reproduction probability: 10%; Selection percentile 

(GAMBIT uses the stochastic tournament): 1% (of the 

population size); Maximum count of proteins per class: 10; 

Population size: 500; Generations count: 100.  
The tables with results show the parameter values tested, 

the processing time (column Time) from GAMBIT - in hours 

and minutes - Specificity (Sp) and Sensitiveness (Sn) in 

percentiles, the Performance (Pf) and the hit rate (HRate) 

given by WEKA. The latter was included since it is usually 

found in literature, but in this work the focus is maximizing 

the Pf, as already explained.  
The first parameter to be tested and tuned was the Hill 

Climbing (HB) probability. The values established for this 

parameter were 10%, 40% and 70%. 

As explained, the idea is to choose the value that results in 

the highest Pf, but here there is an exception. The table 2 

shows that 10% resulted in Pf=45.95 ± 0.05, while 40% 

resulted in Pf=46.12 ± 0.09. It’s also a technical tie, since the 

values, when including the standard deviation, almost touch 

each other. However, the processing time is considerably 

higher for 40% and even more for 70%. 

The conclusion was that all this cost did not provide a 

proportional gain in results. This parameter in particular does 
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not significantly affect the quality of the motifs discovered, 

but does affect the running time in a dramatic level. 

Considering all that, the value HC=10% was chosen as the 

best, resulting in Pf=45.95 ± 0.05% 

 

Table 2: Hill Climbing probability tests and results 
HC Sn (%) Sp (%) Pf (%) HRate 

(%) 

Time 

10% 72.94  

± 0.05 

62.99 

 ± 0,05 

45.95  

± 0.05 

72.94  

± 0.02 

0:52 

40% 73.34  

± 0.19 

62.89  

± 0.03 

46.12 

 ± 0.09 

74.76  

± 0.19 

2:24 

70% 73.31  

± 0.01 

62.90  

± 0.01 

46.11  

± 0.01 

73.31  

± 0.01 

3:42 

 

Then, crossover (Cross) and mutation (Mut) probabilities 

were tested. Those probabilities together sum 0.9. The 

remaining 0.1 is reserved to the reproduction operation. So, 

during the processing of a certain generation (in order to 

produce its offspring), there is 90% of probability to occur a 

mutation or a crossover and 10% to occur a simple 

reproduction. The selected individual is directly inserted in 

the next generation without any changes. Table 3 presents all 

the combinations tested. The best result was achieved with 

Mut=10%, Cross=80%, with Pf=46,54 ± 0.06%.  

 

Table 3: Crossover and Mutation tests and results 
Mut Cross Sn (%) Sp (%) Pf (%) HRat

e (%) 

Time 

30% 60% 73.08  

± 0.03 

62.93  

± 0.05 

45.99  

± 0.16 

73.08 

± 0.53 

0:57 

20% 70% 72.90  

± 0.26 

62.97  

± 0.04 

45.90  

± 0.14 

72.90 

± 0.26 

1:00 

10% 80% 74.17  

± 0.13 

62.75  

± 0.03 

46.54  

± 0.06 

74.17 

± 0.13 

1:09 

60% 30% 73.11  

± 0.12 

62.93  

± 0.03 

46.01  

± 0.06 

73.11 

± 0.12 

0:48 

70% 20% 73.43  

± 0.07 

62.88  

± 0.02 

46.17  

± 0.03 

73.77 

± 0.49 

0:49 

80% 10% 73.44  

± 0.17 

62.87  

± 0.04 

46.18  

± 0.08 

73.46 

± 0.18  

0:49 

 

The influence of the population size (Pop) and the number 

of generations (Gen) were also investigated. Populations with 

200, 500 and 1000 individuals were tested against 

experiments with 50, 100 and 250 generations. The best result 

was achieved with Gen=100, Pop=500, what resulted in 

Pf=46.54 ± 0.06%, as visible in table 4. 

 

Table 4: Population size and number of generations tests and 

results 
Gen Pop Sn (%) Sp (%) Pf (%) HRate 

(%) 

Time 

50 1000 73.12  

± 0.26 

62.97 

 ± 0.07 

46.02  

± 0.12 

73.12  

± 0.26 

2:21 

100 500 74.17  

± 0.13 

62.75  

± 0.03 

46.54  

± 0.06 

74.17  

± 0.13 

1:09 

250 200 73.29  

± 0.21 

62.94 

 ± 0.08 

46.13  

± 0.16 

73.29  

± 0.34 

0:48 

 

Finaly, the percentile of the population that was used for 

tournament selection (Sel) was tested with 1%, 3%, 5% and 

7%. The best result was Sel=1%, what resulted in Pf=46.54 ± 

0.06%, as presented in table 5. 

Table 5: Tournment rate tests and results 
Sel Sn (%) Sp (%) Pf (%) HRate (%) Time 

1% 74,17 

 ± 0,13 

62,75  

± 0,03 

46,54  

± 0,06 

74,17  

± 0,13 

1:09 

3% 73,28  

± 0,33 

62,94  

± 0,02 

46,13  

± 0,18 

73,28  

± 0,33 

3:19 

5% 73,00  63,00 45,99  73,00  5:06 

± 0,14  ± 0,05 ± 0,05 ± 0,14 

7% 73,15  

± 0,06 

62,93 

 ± 0,01 

46,03  

± 0,03 

73,15  

± 0,06 

6:50 

 

After the evaluation of the parameters directly related to the 

genetic algorithm implemented by GAMBIT, an evaluation of 

the influence of the number of motifs (Mot) associated to each 

protein class was performed. WEKA was provided with 5, 10, 

15 and 20 motifs and 10 gave the best result, Pf=46.54 ± 

0.06%, as presented in table 6. 

Table 6: Number of motifs influence on J48 classifier tests 

and results 
Mot Sn (%) Sp (%) Pf (%) HRate (%) Time 

5 69.09  

± 0.03 

63.63  

± 0.03 

43.96  

± 0.03 

69.09  

± 0.03 

1:12 

10 74.17  

± 0.13 

62.75  

± 0.03 

46.54  

± 0.06 

74.17  

± 0.13 

1:09 

15 74.00  

± 0.26 

62.73  

± 0.07 

46.42  

± 0.13 

74.00  

± 0.26 

1:12 

20 74.08  

5± 0.19 

62.74  

± 0.03 

46.48  

± 0.10 

73.99  

± 0.20 

1:12 

 

After all the experiments and their results collection and 

compilation, the parameter set that produced the best results 

from GAMBIT when evaluating 25,084 enzymes, distributed 

in 6 classes (EC.1 to EC.6) is: Hill Climbing probability: 

10%; mutation probability: 10%; crossover probability: 

80%; selection probability: 10%; population size: 500 

individuals; number of generations: 100; tournament 

percentile: 1%; motif amount to each class: 10. 

 

IX. CONCLUSIONS 

The best results for the enzyme dataset with J48 (C4.5 

implementation) and 10-fold cross validation methods 

(performance=46.54 ± 0.06 and hit rate=74.17 ± 0.13) 

suggest that the proposed evolutionary computation method is 

effective in finding predictive features (motifs) for protein 

classification, but still required enhancements. 

The Hill Climbing probability does not produce any 

enhancements in terms of quality of the motifs, but severely 

slows down the evolution process. Higher values for this 

parameter increase the pressure for evolution, requiring a 

larger amount of individuals with higher fitness at each 

generation. In order to get closer to that amount, the GA 

works for longer before giving up. 

The evolution process resulted in better motifs when only 

10% of the operations where mutation, 80% were crossover 

and 10% was replication. This happens because high rate of 

mutation produces many non-existing motifs, since it’s a 

random search. On the other hand, crossover uses parts of a 

pair of individuals with certain quality to produce other two 

individuals, eventually combining two motifs with lower 

quality to produce others with higher quality. 10% of the 

motifs were simply replicated to the next generation, giving 

them the opportunity to be part of the evolution process again. 

Experiments with a population with 500 individuals that 

evolved for 100 generations produced better results. Smaller 

populations take less time to evolve, even for a longer chain of 

generations, but the results are worse. The opposite situation 

(larger populations for fewer generations) did not produce 

better motifs either, but took more time to run. 

The selection rate with higher values did not provide better 

results, but increased the execution time. The conclusion is 
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that a bigger portion of candidates does not produce better 

offspring, only the best ones seem to really produce quality 

motifs. 

The amount of motifs found to characterize each class has 

influence, but only until a certain level. Experiments shown 

those more than ten motifs do not provide any better results. 

This phenomenon is related to the quality of the individuals. 

For instance, certain experiments produced 20 motifs for each 

class, but only the best ten of them have a significant 

discriminating power. The others had non-zero fitness, but 

they did not help to characterize a protein class. 

All the motifs found during all the experiments were 

exactly three amino acids long. Motifs with this size are not 

hard to be found in many proteins, but they occur in more than 

one class. However, each class is characterized by several 

motifs (ten in the experiments with the best performance) 

combined in a decision tree.  

In the experiments with the best performance, the decision 

trees generated by J48 had in average 2905 nodes, with 1453 

leaves, after pruning. Those tree test for combinations of 

presence and absence of the motifs in a given protein and J48 

uses that to predict the class of such a protein. 

The discriminating power of a single motif (its fitness) is 

not taken in account during the evaluations performed by J48, 

since the attributes in the input file for WEKA just establish 

presence of absence of the motifs. 

One possible approach for future research could be 

assigning more than one class to a single motif and design a 

fitness function that evaluates the discrimination power by 

using the intersection of the protein sets involved. 

Considering the generated motifs have a fitness which 

value varies between zero and one, maybe some kind of fuzzy 

system evaluation could provide an interesting prediction 

heuristic. 

When working specifically with enzymes, another 

possibility for future work could be a hierarchical evaluation 

and evolution process, since enzymes are already organized in 

classes and subclasses. 

Yet another possible course of action could be work with 

motifs that accept wildcards, giving them more flexibility 

instead of being required to occur in absolutely identical form 

in proteins. 

GAMBIT was conceived in a modular design and can be 

adapted to accommodate such variations. The experiments 

used more than 37000 proteins and were successful to predict 

the class of an unclassified protein in around 75% of the 

times. This suggests that GAMBIT presents a promising 

approach to the Protein Classification Problem, but still 

requires some improvements in order to increase its 

prediction power. 

REFERENCES 

[1] TANFORD, C and REYNOLDS, J – Nature’s robots: a history of 

proteins, USA: Oxford University Press, 312p, 2001. 

[2] LEHNINGER, A. L.; NELSON, D. L.; COX, M. M.  Principles of 

Biochemistry. 6. ed. Macmillan, 2012. 

[3] XU, Q.; DUNBRACK, R. L. Assignment of protein sequences to 

existing domain and family classification systems: Pfam and the PDB. 

Bioinformatics, v. 28, n. 21, p. 2763, 11, 2012. 

[4] FARIA, D.; FERREIRA, A. E. N.; FALCÃO, A. O. Enzyme 

classification with peptide programs: a comparative study. BMC 

Bioinformatics, England, v. 10, p. 231-231, 2009. 

[5] IQBAL, M. J.  et al. Efficient feature selection and classification of 

protein sequence data in bioinformatics. The Scientific World 

Journal, United States, v. 2014, p. 173869-173869, 2014. 

[6] GOLDBERG, D. E. Computer-Aided Pipeline Operation Using 

Genetic Algorithms and Rule Learning. PhD Thesis, University of 

Michigan, 1983. 

[7] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization & 

Machine Learning. Reading, MA: Addison-Wesley, 1989.  

[8] NANNI, L.; LUMINI, A.; BRAHNAM, S. An empirical study of 

different approaches for protein classification. The Scientific World 

Journal, United States, 2014. 

[9] MITCHELL, M. An Introduction to Genetic Algorithms. Cambridge: 

MIT Press, 1997. 

[10] WANG, S.; YAO, X. Multiclass Imbalance Problems: Analysis and 

Potential Solutions. IEEE Transactions on Systems, Man & 

Cybernetics: Part B, v. 42, n. 4, p. 1119, 08, 2012. 

[11] ABOLA, E. E.; SUSSMAN, J. L.; PRILUSKY, J., MANNING, N. O. 

Protein data bank archives of three-dimensional macromolecular 

structures. Methods in Enzymology, San Diego: Academic Press, v. 

277, 1997. 

[12] BERMAN, H. M.; WESTBROOK, J.; FENG, Z., GILLILAND, G.; 

BHAT, T. N., WEISSIG, H.; SHINDYALOV, I. N.; BOURNE, P. E. 

The protein data bank. Nucleic Acids Research, v. 28, p. 235-242, 

2000. 

[13] MCDONALD, A. G.; BOYCE, S.; TIPTON, K. F. Enzyme 

Classification and Nomenclature. eLs , 2001 

[14] QUINLAN, J. R. C4.5: programs for machine learning. Elsevier, 2014. 

[15] KOHAVI, R. A Study of Cross-Validation and Bootstrap for 

Accuracy Estimation and Model Selection. Proceeding of 

International Joint Conference on Artificial Intelligence (IJCAI), 1995 

[16] LOPES, H. S. Analogia e Aprendizado Evolucionário: uma 

Aplicação em Diagnóstico Clínico. Tese (Doutorado em Sistemas de 

Informação), Departamento de Engenharia Elétrica, Universidade 

Federal de Santa Catarina, 1996, 159 p. 

[17] HAND, D. J. Construction and Assessment of Classification Rules. 

New York:  John Wiley & Sons, 1997. 

 

 

 

 Denise Fukumi Tsunoda has a BS in Computer 

Science from the Federal University of Paraná (1992), a 

master's degree (1996) and Ph.D. (2004) in Electrical 

Engineering and Industrial Informatics at the Federal 

Technological University of Paraná. She is currently a 

professor at the Federal University of Paraná in the 

course of Information Management, Department of 

Science and Information Management and coordinator 

of the Master's program in Science, Management and Information 

Technology. 

 

 

 Alex Sebastião Constâncio has a BS in Computer 

Science from the Federal University of Paraná (1992) 

and has more than 25 years of experience as a software 

engineering professional and IT management. At this 

moment, he works as an IT analyst in the Center of 

Electronic Computing at Federal University of Paraná.  

Additionally, he is currently member of the Master’s 

program in Science, Management and Information Technology and performs 

researches in machine learning and text mining. 

 


