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 

Abstract— In this paper, a new methodology of Bilinear 

Proportional Integral (BPI) observer-based Fault Tolerant 

Control (FTC) for a class of nonlinear systems with bilinear 

terms is proposed. Nonlinear systems are represented by the 

Takagi-Sugeno (T-S) Fuzzy Bilinear Model (FBM). The 

objective is to design a stable and robust fault-tolerant 

controller based on a T-S fuzzy BPI observer. The proposed 

BPI observer estimates simultaneously the states of the system 

and the occurring time varying faults with the final goal to 

adapt control law strategies in order that the system remains 

stable even in fault case. Further, the stability conditions of the 

designed BPI observer and the state feedback control are 

analysed with Lyapunov theory to ease the design of FTC. The 

gains of the BPI observer and the state feedback control law are 

obtained by solving linear matrix inequalities (LMI) under 

equality constraints. Moreover, we proposed some sufficient 

conditions for robust BPI observer-based fault tolerant control 

of the FBM with parametric uncertainties. Finally, an academic 

system is presented to illustrate the robustness of the proposed 

controller with respect to uncertainties. 

 

Index Terms—T-S fuzzy bilinear model, Bilinear 

proportional integral observer, Observer-based control, Fault 

tolerant control, Lyapunov function, Parametric uncertainty, 

LMI. 

I. INTRODUCTION 

   

The Bilinear systems are a special class of nonlinear 

systems, where the dynamics are jointly linear in the state and 

input variables, that attract the interest of researchers [1], [2]. 

Moreover, there are many engineering applications as well as 

models in biology, ecology, nuclear engineering are naturally 

described by bilinear systems. Furthermore, many nonlinear 

systems can be adequately approximated bilinear systems. 

As a special extension, fuzzy bilinear systems based on the 

T-S fuzzy model with bilinear rule consequence have 

attracted the interest of researchers [3]-[5]. It is proved in 

these papers that often nonlinear behaviors can be 

approximated by T-S bilinear multimodel description. Some 

topics of control are extended to T-S FBM, such as stability 

and stabilization in [6], [7], observers and state estimation in 

[8]-[10], faults detection and fault tolerant control [9]-[11]. 

Fault Tolerant Control have become challenging problems 

in the area of modern control theory. FTC allows having a 

control loop that fulfils its objectives when faults appear. 

Thus great interest has been accorded to the fault tolerant 

controllers for nonlinear systems in the literature [12]-[14]. 

Moreover, it is noted that all of the aforementioned assume 

that the system states are measured, which is not true in many 

control systems and real applications. For this reason, 

observer-based fuzzy controllers were considered in many 

researches. In [15], [16], the authors have studied the 
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controller designs based on fuzzy observers for T-S fuzzy 

systems. Nonetheless, in [17], [18], the authors have 

proposed sufficient design conditions for robust stabilization 

of T-S fuzzy models with parametric uncertainties based on 

state estimation. However, to the best of our knowledge, no 

previous study has investigated the problem of an BPI 

observer-based FTC for T-S fuzzy bilinear models and a 

robust stabilization for uncertain T-S fuzzy models. 

In this paper, we consider the fault-tolerant control 

problem for the fuzzy bilinear systems with parametric 

uncertainties. Fuzzy BPI observer is designed to estimate 

simultaneously the states and the occurring time varying 

faults. Based on the fault estimation, the fault-tolerant 

controller is designed to ensure that the closed-loop system 

with faults is asymptotically stable. 

This paper is organized as follows. In section II, the 

considered structure of the T-S fuzzy bilinear system is 

presented. In Section III, the problem statement is described. 

In Section IV, the problem of observer-based control for the 

FBM is developed. In section V, the robust control of the 

FBM with parametric uncertainties is proposed. An example 

is provided to show the effectiveness of the proposed design 

in the subject of section VI. 

II. T-S FUZZY BILINEAR SYSTEMS MODELING 

The T–S fuzzy bilinear models based on the T-S fuzzy 

model with bilinear rule consequence are defined by 

extending the T-S fuzzy ordinary model. Similar to [19], the 

fuzzy bilinear model can be represented by the following 

fuzzy if-then rules: 

1 1 :  if   ( )  is      and and   ( )  is   i

i g igR t F t F   

then ( ) ( ) ( ) ( ) u(t)

( ) ( )

  




i i ix t A x t B u t N x t

y t Cx t
                             (1) 

where 
iR denotes the thi fuzzy rule  1, , i r , r

 

is the 

number of if-then rules, ( )i t are the premise variables which 

can be measurable or not measurable, and  ( )ij jF t are 

fuzzy set. ( )nx t is the state vector, ( )u t is the 

control input, and ( ) py t

 

is the system output. The 

matrices   ,     ,     ,   i i iA B N C

 

are known matrices. Then, 

the overall FBM can be described as follows: 

 
1

( ) ( ( )) ( ) ( ) ( ) u(t)

( ) ( )




  


 


r

i i i i

i

x t h t A x t B u t N x t

y t Cx t

                 (2) 

where (.)ih

 

verify the following properties: 

 1

( ( )) 1
1,2, ,

0 ( ( )) 1






 
  


r

i

i

i

h t
i r

h t





                                         (3) 
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In the remainder of the paper, the following lemmas are used. 

Lemma 1: For any matrices A  and B  with appropriate 

dimensions, the following property holds for any positive 

scalar   : 

1  T T T TA B B A A A B B                                              (4) 

Lemma 2: Given a scalar 0 and a symmetric positive 

definite matrix P , the following inequality holds:  

1 12  ,    ,   T T T nx y x Px y P y x y                          (5) 

Lemma 3: Let us consider P a positive definite matrix and 

Q a full column rank matrix. It follows that the matrix 
TQPQ  is a positive definite matrix. 

III. PROBLEM STATEMENT 

Let us consider the T-S fuzzy bilinear models containing 

the actuator faults which can be rewritten in the following 

form: 

1

( ) ( )
( ) ( ( ))

( ) ( ) ( )

( ) ( )



  
  

   





r

i i

i

i i i

A x t B u t
x t h t

N x t u t G f t

y t Cx t

                       (6) 

where ( )f t is an actuator fault. 

Assumption 1: The fault ( )f t satisfies
1( ) f t   and the 

first time derivative of ( )f t with respect to time is norm 

bounded i.e. 
2( ) f t  and 

1 20  , 0       . 

The main objective of FTC design is to find a control law 

( )u t such that the closed-loop system remains stable despite 

the presence of actuator faults. Then, it is necessary to 

estimate the states and faults. In this paper, a BPI observer is 

utilized for estimate both the states and the actuator faults 

with the final goal to adapt control law strategies such that the 

system remains stable even in actuator fault case. Following 

the design concept in [1], the fuzzy control law for FBM is 

formulated as follows: 

 

 

 

1

1

1

ˆ( )
( ) ( )

ˆ ˆ1 ( ) ( )

ˆ      ( ) sin ( )

ˆˆ      ( ) ( ) cos ( )




















r
i

i
T T

i
i i

r

i i

i

r

i i i

i

D x t
u t h t

x t D D x t

h t t

h t D x t t




  

  

                             (7) 

where: 

ˆ( )ˆsin ( )
ˆ ˆ1 ( ) ( )

1ˆcos ( )
ˆ ˆ1 ( ) ( )

ˆ            ,
2 2







 
  
 

i
i

T T

i i

i
T T

i i

i

D x t
t

x t D D x t

t
x t D D x t





 


 

  is a given scalar, and 1  ,  1, , n

iD i r  are vectors 

to be determined. 

In the following section, we will be developing the BPI 

observer-based control problem for the T-S FBM. 

IV. STABILIZING FAULT TOLERANT CONTROL FOR FBM 

In order to estimate both state and faults of FBM, we 

propose a BPI observer and make an analysis of the error 

system, from which we provides a design method of a fuzzy 

observer for the fuzzy bilinear system (2). The considered 

BPI observer is described by the following equation: 

 

   

1

1

( ) ( ) ( )
( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )





   
      

  




   






r
i i i

i

i i i

r

i i

i

H z t L y t J u t
z t h t

M u t y t f t

x t z t Ey t

y t Cx t

f t h t y t y t






                  (8) 

where ( )nz t , ˆ( )nx t , ˆ( ) py t and ˆ ( ) ff t are 

the observer state vector, the estimated state vector, the 

estimated output vector and the estimated faults vector 

respectively.   ,     ,     ,     ,     ,     and  i i i i i iH M L J E

are unknown matrices of the BPI observer of appropriate 

dimensions to be determined. 

Note that the premise variables do not depend on the state 

variables estimated by a BPI observer. 

Let us consider the state and fault estimation errors defined 

respectively by: 

     ˆ  xe t x t x t                                                              (9) 

     ˆ  fe t f t f t                                                               (10) 

From (8) and (9), the state estimation error given as follows: 

       xe t Tx t z t                                                               (11) 

where +  nT I EC . 

By taking into account (2) and (8), the dynamics of the state 

estimation error and the closed-loop system with the state 

feedback control law defined in (7) becomes after some 

calculations: 

   

 

   

 
1

( ) ( )

( ) ( ) ( ) ( )

( ) ( )


   
 
    
 



   


i x i i i

r

i i i i ix

i

i i i f

H e t TA L C H T x t

h t TN M C x t u t TB J u t

TG f t t

e t

e



 

                                                                                        

                                                                                          (12)         

   
1 1

ˆ( ) cos ( )
( ) ( ) ( )

( ) 

  
  

  


r r
ij i j j x

i j

i j i

x t B D e t
x t h t h t

G f t

 
                                                                                          
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                                                                                          (13)                                                                                                                                                  

where: 

ˆ ˆsin cos   ij i i j i j jA N B D                                       (14) 

Hence, if the following conditions hold true 

 1,2, , i r  

- - 0i i iTA L C H T                                                                  (15) 

0 i iTN M C                                                                      (16) 

0 i iTB J                                                                         (17) 

Then, the equation of the observing error becomes 

    
1

( ) ( ) ( ) ( )


 
r

i i x i i fx

i

h t H e t f t et te                    (18)         

with   i i iTG          

From (15) and using +  nT I EC , we get    

 i i iH TA K C                                                                        (19) 

with  i i iK H E L                                                                  (20) 

The goal is to design a feedback control law such that the 

system remains stable even if a fault occurs. A result is 

summarized in the following theorem. 

Theorem 1: If there exist symmetric positive definite 

matrices 
1 2 3 1 2 ,   ,   ,   ,    ,  Q P and P  matrices  ,  i iW V  

 ,   ,   ,   ,  i i i iY Z R U S  and positive scalars  ,  , 0    

such that LMIs (21) subject to linear equality constraints 

(22), (23) are satisfied 1   ,  1   i r j r .  

 

1

3

1

2

1 * * * * * * *

* * * * * *

0 * * * * *

0 0 * * * *
0

0 0 0 2 * * *

0 0 0 0 0 2 * *

0 0 0 0 0 2 *

0 0 0 0 0 3





 
 


 
 
 

  
 

 
 
 
 
 

 

i

i j

T

i j

LM

N Q I

BV I

Q

BV Q

I

I LM

I LM



 





       

(21) 

 2 i iR P SC B
                 

                                             

(22)

 

 

 2 i iU C P SC N

                                                          

(23)

                               

 

     

2

1

2 2 1

1

2

3



  

       

 

T

i i

T TT

i i i i

T

i i

LM AQ QA I

LM P SC A A P SC W C W C

LM Y Z C




         

(24) 

Then, the state ( )x t of the system, the state estimation error 

( )xe t and the fault estimation error ( )fe t are bounded. The 

gains of the observer and the state feedback control law are 

given by: 

 

1 1 1

2 2 2

1 1

2 2

1 1 1

2 3

 ,  ,  ,

C ,  ,

 ,  , 

  

 

  

  

   

    

i i i i

i n i i i i

i i i i i i i

E P S J P R M P U

H I EC A P W P Y

L P W H E P Z D V Q


                   (25) 

Proof: In the framework of a FTC by state-feedback, a new 

procedure is proposed such that the closed-loop system and 

the convergence of the state and fault estimation errors 

becomes asymptotically robust stable by using a Lyapunov 

function-based design approach. Let us consider a Lyapunov 

function ( )V t depending on ( ) , ( ) and ( )x fx t e t e t defined 

by: 

1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )  T T T

x x f fV t x t Px t e t P e t e t Pe t              

(26) 

where
1 2 3 ,   and P P P are symmetric and positive definite 

matrices with appropriate dimensions. Stability condition for 

the estimation error yields that the time derivative of (26) 

should be negative definite. The derivative of ( )V t with 

respect to time yields: 

   
1 1

2 2

1 1

3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 

 
 

   
 
  



T T

r r
T T

i j x x x x

i j T T

f f f f

x t Px t x t Px t

V t h t h t e t P e t e t P e t

e t Pe t e t Pe t

 

                                                                                          (27) 

that becomes by using equations (18) and (13): 

   

1

1

1 1 2 2

3 3

2

ˆ2 cos
( ) ( ) ( )

2 2

2 2

 

    
 
  

  
   
 
    



T T T

ij x i x i

T
r r

i j j x

i j T T
i j x i x i f

T T

f f i x

x x e e x PG f

x PB D e
V t h t h t

e P f e P e

e P f e P Ce

 
 



                                                                                          (28) 

where: 

1 1   T

ij ij ijP P                                                                   (29) 

2 2  T

i i iH P P H                                                              (30) 

By using the Assumption (1) and applying Lemma (2) for 

three terms of the above inequality (28), it follows that: 
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 

 

 

1 1

2 1 2 1 2

1 1

1

1 1

3 2 3 2 3

1 2

2

1 1

1 3 1 3 1

1 3

3

2

               

2

               

2

               

 



 



 



      

  

   

  

   

  

T T T T

x i x x i i

T

x x

T T T

f f f

T

f f

T T T T

i i i

T

e P f e e f P P f

e e

e P f e e f P P f

e e

x PG f x x f G P PG f

x x

 

 

 

 

 

 

                (31) 

with: 

 

 

 

1 2 1

1 max 2 1 2

2 2 1

2 max 3 2 3

3 2 1

1 max 1 3 1

               





   

 

 

T

i i

T

i i

P P

P P

G P PG

  

  

  

                               (32) 

Let us define the scalar  the maximum value of the sum of 

all constant coefficients obtained in the equalities (32): 

 1 2 3max                                                            (33) 

Then, the time derivative of the Lyapunov function (28) is 

bounded as follows: 

   

1

2 3

1 1
1 1

1 2

1

3

ˆ2 cos

( ) ( ) ( ) 2 2
 

 



   
 
 
  

    
 
    
 
    



T T

ij x i x

T

i j j x
r r

T T

i j x i f f i x

i j
T T

x x f f

T

x x e e

x PB D e

V t h t h t e P e e P Ce

e e e e

x x

 

  

 

 

 

         (34) 

The above inequality (34) can be reformulated as follows: 

   
1 1

( ) ( ) ( ) ( ) ( )
 

  
r r

T

a i j ij a

i j

V t X t h t h t X t                (35) 

where the augmented vector 
aX  and the matrix ij

are 

respectively given by: 

( )

( ) ( )

( )

 
 

  
 
 

a x

f

x t

X t e t

e t

                                                                     (36) 

 

1

3 1

1

1 2 3

1

2

ˆcos 0

*

* *







    
 
       
 

  

ij i j j

T

ij i i i

PB D

P C P

  

 



                                                                                           

                   (37) 

Let us define the positive scalar   

   min
0

1 1

min ( ) ( )


 

 
   

 


r r

i j ij
t

i j

h t h t                          (38) 

which can be also bounded by: 

 min
,

min ij
i j

                                                                         (39) 

If the following inequality holds: 

   
1 1

( ) ( ) 0
 

 
r r

i j ij

i j

h t h t                                             (40) 

Then, we can obtain that 

2
( ) ( )  aV t X t                                                                  (41) 

It follows that ( ) 0V t if 
2

( )  , 0  aX t t  . Then, we 

can deduce that the state ( )x t , the state estimation error 

( )xe t and the fault estimation error ( )fe t converge to a small 

set according to Lyapunov stability theory and lie in it. This 

set is smaller as the constant  converges to zero. 

Let us introduce the following notations for the sake of 

simplicity: 

 
1

( )



r

i i

i

Y h t Y                                                               (42) 

   
1 1

( ) ( )
 


r r

i j ij

i j

Y h t h t Y                                               (43) 

where 
iY and 

ijY are given matrices. By using these notations, 

the inequality (40) becomes: 

1 2

4
0

*

  
   

  

 





                                                                (44) 

with: 

1 1

3

   ij                                                                  (45) 

2

1
ˆcos 0   

 i j jPB D                                                      (46) 

 1
4 1 2 3

1

2*





     
   

  

T

i i iP C P


 



                                  

(47) 

Let us consider a symmetric matrix  defined as: 

1 1

1 1

1

1

0 0
 , 

0 0

    
    

  

P P

I
 


                                             (48) 

By using Lemma (3), and post and pre-multiplying the 

inequality (44) by  , we can obtain that: 
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1 1 1 1 2

1 1 1 1

4

1 1

0
*

    
 

  

P P P 





 
                                               

 (49) 

The term 4

1 1  can be replaced by considering the 

following inequality which holds for any scalar  such that 

     
1 1

4 4 4

1 1 0
 

     
T

     
                    

 (50) 

 
1

4 2 4

1 1 12


                                                  (51) 

Then from the above inequality (51) and with the Schur 

Complement, it follows that the inequality (49) holds if: 

1 1 1 1 2

1 1 1 1

1

4

0

* 2 0

* *

    
 

  
  

P P P

I

 





 
                                         (52) 

Now, the term 1 1 1

1 1

 P P
 of (52) can be rewritten as: 

 

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 3 1

ˆ ˆsin sin

ˆ ˆ       cos cos

     

    

    

   

T T

i i i j i j

T

i j j i j j

P P P A A P N P P N

B D P P B D P P

    

    

                                                                                          (53) 

Applying lemma (1), the previous equation can be rewritten 

as: 

 

1 1 1 1 1 1 1 2

1 1 1 1 1 1

1 1 1 1 1

1 1 1 3 1                

     

    

    

  

T T

i i i i

T

i j i j

P P P A A P P N N P I

P B D B D P P P

 


           

 (54) 

From the inequality (54) and the matrices (46), (47), using the 

notations (42), (43), replacing 
iH  by (19) and  nT I EC

and by introducing the following variable changes: 

1

1 2 2

2 2 3 2

 ,  ,  , 

 ,  ,  , 

   

    

j j i i i i

i i i i i i

Q P D V Q W P K Y P

R P J U P M Z P S P E

                   (55) 

we can obtain the inequalities given in theorem (1) by 

applying the Schur's complement [20] to (52) under equality 

constraints (22), (23). This completes the proof of the 

theorem. 

This section is devoted to the design of a BPI observer-based 

control for T-S FBM. The system parameters used are known 

but in reality the system parameters may either be uncertain 

or time-dependent. Moreover, the problem of stabilization 

remains a key problem in the study of uncertain T-S fuzzy 

control systems and their controller designs. The study of BPI 

observer-based control for T-S FBM with parametric 

uncertainties will be subject the next section. 

V. ROBUST CONTROL OF THE FUZZY BILINEAR MODEL WITH 

UNCERTAINTIES 

In this section, we shall consider a uncertain nonlinear 

system which can be described by the following T-S fuzzy 

bilinear model with actuator faults: 

   

 1

( ) ( )
( ) ( ( ))

( ) ( ) ( )

( ) ( )



     
  

      





r

i i i i

i

i i i i

A A x t B B u t
x t h t

N N x t u t G f t

y t Cx t

  

                                                                                          (56) 

The parameter uncertainties considered here are 

norm-bounded and presented by the form  

   1 2 3( )   i i i i i i i iA B N F t E E E                  (57) 

where 
1 2 3 ,  ,  , i i i iE E E are known real constant matrices of 

appropriate dimensions, and ( )iF t is an unknown matrix 

function satisfying ( ) ( ) T

i iF t F t I , in which I is the 

identity matrix of appropriate dimension. 

The feedback controller and the state of BPI observer for T-S 

FBM with parametric uncertainties (56) is the same as that 

for (6). 

In order to describe the dynamic of BPI observer (8), the state 

and fault estimation errors is defined by (9), (10). Then, from 

(56) and (8), we have: 

   

 

   

 

1

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )



   
 
    
 
      
    



i x i i i

r
i i i i

i

i i

x

i i

i i i f

H e t TA L C H T x t

TN M C x t u t TB J u t
h t

T A x t T B u t T N x t u t

TG f t e t

e t 

 

                                                                                        

                                                                                          (58)         

   
 

 1 1

( ) ( )
( ) ( ) ( )

ˆcos ( ) 

    
 
    


r r

ij ij i

i j

i j
i i j j x

x t G f t
x t h t h t

B B D e t
 

 

                                                                                        

                                                                                          (59) 

where:     

ˆ ˆsin cos   ij i i j i j jA N B D                                      (60) 

ˆ ˆsin cos      ij i i j i j jA N B D                             (61) 

If the conditions (15), (16), (17) are satisfied 

 1,2, , i r , we get: 

   

 
1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )


    
 
  
 
  






i x i ir

i i

i

x

i

i i f

H e t T A x t T B u t

h t T N x t u t

TG f t t

e t

e



 

         (62)         

By using (7), we obtain: 
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     
1 2

3
1 1

( ) ( )
( ) ( )

( ) ( ) 

  
 
   


r r

i x i

i j

i j i f

x

i

e t f t
h t h t

x t e
t

t
e  


            (63)         

where :  

1 ˆcos  i i i j jH T B D                                                       (64)         

2 i i iTG                                                                       (65)      

3 ˆ ˆcos sin     i i i j j i jT A T B D T N                            (66)     

Hereafter, we give the following theorem which presents 

sufficient conditions such that the closed-loop fuzzy system 

(59) is globally asymptotically stable in the presence of 

actuator faults and which gives the gains of the observer and 

the state feedback control law.     

Theorem 2: If there exist symmetric positive definite 

matrices 
1 2 3 1 2 ,   ,   ,   ,    ,  Q P and P  matrices  ,  i iW V  

 ,   ,   ,   ,  i i i iY Z R U S and positive scalars  ,  ,  , 0     

such that LMIs (67) subject to linear equality constraints 

(68), (69) are satisfied 1   ,  1   i r j r .  

 

1

3

1

2

3

1

2

1

1 * * * * * ** * * * * *

* * * * * * * * * *

0 * * * * * * * * *

0 0 * * * * * * * *

0 0 0 * * * * * * *

0 0 0 0 * * * * * *

0 0 0 0 0 * * * * *

4 0 0 0 0 0 0 * * * *

0 0 0 0 0 0 0 * * *

5 0 0 0 0 0 0 0 0 * *

0 0 0 0 0 0 0 0 0 6 *

0 0 0 0 0 0 0 0 0 0 0











 













i

i j

i

i j

i

i j

i j

LM

N Q I

BV I

Q

E Q I

E V I

E Q I

LM I

E V I

LM I

BV LM

LM

















0

7

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                                                        

                                                                                          (67) 

 2 i iR P SC B
                 

                                             

(68)

 

 

 2 i iU C P SC N

                                                          

(69)

                               where: 

     

2

1

2 2 1

1

2

3



  

       

 

T

i i

T TT

i i i i

T

i i

LM AQ QA I

LM P SC A A P SC W C W C

LM Y Z C





 

   2

4

5 1 2

 

  

TT

i

TT

i

LM I EC

LM I EC





 

 

1

1 1

2

3

1

2

2 1

1

1

2

* * * * *

* * * *

0 * * *
6 0 0 * *

0 0 0 *

1 2 0 0 0 0

2 *
7

3

2 *

3









 
 

 
 
   
 
 
  
 

 
  

 

 
   

 

T

i i

i j

i

T

i

i j

T

i

E E

E D I

E I
LM I

E D I

I

LM
LM

LM

LM







 



 





 

Then, the state ( )x t of the system, the state estimation error 

( )xe t and the fault estimation error ( )fe t are bounded. The 

gains of the observer and the state feedback control law are 

given by: 

 

1 1 1

2 2 2

1 1

2 2

1 1 1

2 3

 ,  ,  ,

C ,  ,

 ,  , 

  

 

  

  

   

    

i i i i

i n i i i i

i i i i i i i

E P S J P R M P U

H I EC A P W P Y

L P W H E P Z D V Q


                   (71) 

Proof: In order to prove the stability of the closed-loop 

system and the convergence of the state and fault estimation 

errors, sufficient conditions are derived using Lyapunov 

function (26). Then, the derivative of ( )V t with respect to 

time yields: 

  

   

 

 

1 2

1

1 1
2 3

2 2

3 3

2 2

ˆ( ) ( ) ( ) 2 cos

2 2

2 2

 

     
 
  
  

    
 
    
   
  



T T

ij ij x ij x

T T

i x i f
r r

T

i j i i j j x

i j
T T

x i x i

T T

f f i x

x x e e

x PG f e P e

V t h t h t x P B B D e

e P f e P x

e P f e P Ce



   

                                                                                          (72) 

where:     

1 1   T

ij ij ijP P                                                                       (73) 

1 1   T

ij ij ijP P                                                                    

(74) 

  
 

2

2

ˆcos

ˆ       cos

   

  

T
T

ij i i j j

i i j j

H T B D P

P H T B D

 

 
                                   

 (75) 

By using (31), the time derivative of ( )V t  (72) is bounded as 

follows: 
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   

 

 1

3

2 2

1 1
1

3 1

1 1

2 3

ˆ2 cos

( ) ( ) ( ) 2 2

2
 



 

     
 
   
  

    
 
    
 
      



T T

ij ij x ij x

T

i i j j x
r r

T T

i j x i f x i

i j
T T

f i x x x

T T

f f

x x e e

x P B B D e

V t h t h t e P e e P x

e P Ce e e

e e x x

 

  



  

                                                                                          

(76) 

where  is defined by (33).  

The above inequality (76) can be reformulated as follows: 

   
1 1

( ) ( ) ( ) ( ) ( )
 

  
r r

T

a i j ij a

i j

V t X t h t h t X t                (77) 

where the augmented vector 
aX is defined by (36) and the 

matrix ij
is given by: 

1 2

1 3

1

1

2

0

*

* *





  
 

      
  

ij ij

ij ij ij



                                           (78)      

with 

1 1

3

    ij ij ij                                                             (79) 

   2 3

1 2
ˆcos     

T

ij i i j j iP B B D P                                 

(80) 

 3

2 3   
T

ij i iP C P                                                                 (81) 

From (91), we have: 

   ij ij ij
                                                                        (82) 

where ij
is defined by (37) and : 

1 3

2

0

* 0

* * 0

  
 

   
 
 

ij ij

ij ij

                                                                        

(83) 

with: 

 

 

1

2 2 2

3

3 1 2

ˆ ˆcos cos

ˆcos

  

    

     

ij ij

T

ij i j j i j j

T

ij i j j i

PT B D T B D P

P B D P

   

 

              (84) 

Multiplying the previous equations (84) on the left and right 

by 1

1

P and 1

2

P , we can rewrite (84) as: 

 

 

 

   

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1

2 2 2

1 1

3 1 2

1 1

2 2

ˆ ˆsin cos

ˆ ˆsin cos

ˆ ˆcos cos

ˆcos

ˆ ˆcos sin

  

  

 

 

 

      

     

    

     

   

ij i i j i j j

T
T T

i i j i j j

T

ij i j j i j j

T

ij i j j i

T T

i j j i j

A P N P B D P

P A P N P B D

T B D P P T B D

B D P P T A

P T B D P T N

   

   

   

 

   

          (85) 

The equation ij
can be reformulated as follows: 

1 2 3      ij ij ij ij                                                              
 (86) 

where:       

11 21

1 2

1

3

2

0 0 0 0

* 0 0  , * 0 0  ,

* * 0 * * 0

0 0

               * 0

* * 0

    
   

      
   
      

 
 

   
 
 

ij ij

ij ij

ij

ij ij

                           

 (87)

 

   

 

11 1 1

2 2

1

2

21 1

1

ˆcos

ˆ      sin

ˆcos

 





    

 

   

TT

ij i i j j

T

i j

ij i j j

P T A P T B D

P T N

B D P

 

 

 

                      (88) 

Using the uncertainties structure and by using the separation 

lemma 1 [21], we obtain 

1

2

0 0

* 0

* * 0

 
 

   
 
 

ij

ij ij

T

T
                                                                        (89) 

where: 

 1 2 1 1

1 2 2 1

1 1 1 1 1 1

1 1 1 1 1 2 2 1

1 1 1 2 1

1 3 3 1

2 1 1 1 1 1 1

2 1 1 2 2 3 3 2

1 1

2

1 2

      +

      +

      +

 

     

   

     

 

  





 

T T T T T

ij i i i i j i i j

T T T

i i j i i j

T T T T

i i i i i i

T T

ij i i i i

T
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T T F F T P D E E D P
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P E E P T F F T
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P D

  

 

  

 



 

1 1 2

2 2 2

2 1 1
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

 
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T T T T
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        (90) 

From (82) and (89), we have: 

1 2 1 2

4 4
0

* *

     
   

       

   

 

                                                 (91) 

where 1 2 4 ,  ,   ij ij ij
are defined by (45)-(47) respectively and 

1 2 4 ,  ,   ij ij ij
 are given by: 
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 

1 1

2

2

4

0 0

0

* 0

 

 

 
   

 

ij ij

ij

ij

ij

T

T

                                                                         (92) 

Using (49), (51) and with the Schur Complement, it 

follows that the inequality (91) holds if: 
1 1 1 1 1 2 2

1 1 1 1

4

1

4

0 0

* 0 0
0

* * 2

* * *

      
 

  
 
 

  

P P P

I

   







 

     (93) 

We calculate each terms of inequality (93) and by 

considering the variable changes (55), we can obtain the 

inequalities given in theorem (2) by applying the Schur's 

complement [20] to (93) under equality constraints (68), (69). 

This completes the proof of the theorem. 

VI. NUMERICAL EXAMPLE 

To illustrate the effectiveness of the proposed method, an 

example is considered. The dynamical FBM is given by the 

following data: 

1 1 1 1

2 2 2 1

2 1 0 5 2 0 0 1

1 3 0  , 1.2  , 0 0 0  , 0

2 1 8 2.5 0 0 1 1

2 0 1 4 2 0 0 1

0.5 2 0  , 2  , 0 0 0  , 0

2 1 1 0 0 0 1 1

1 0 1

1 1 0

        
       

    
       
              

        
       

    
       
              

 
  
 

A B N G

A B N G

C

 

Uncertainties are also defined by the following matrices: 

1 11 21 31

2 12 22 32

0.1 0 0 0 0.5 0 1 0 0 0

0 0 0.1  , 0 0 0.3  , 0.5  , 0 0 0

0 0.1 0 0 0 0 0 0 0 0

0.1 0 0 0 0.5 0 1 0 0 0

0 0 0.1  , 0 0 0.6  , 0.5  , 0 0 0

0 0.1 0 0 0 0 0 0

       
       

   
       
              

     
     

   
     
          

E E E

E E E

0 0

 
 
 
  

The weighting functions are defined by: 

     
2

1
1 2 1

51( ) exp    ,   ( ) 1 ( )
2 2

  
       

x
h x t h x t h x t

 

The additive actuator fault signal is defined as follows : 

 

0 1

0.5sin 0.5 1 7
( )

0.3 7 9

0 9




 
 

 
 

t s

s t s
f t

s t s

t s

  

Thus, the resolution of the conditions of theorem 2 leads to 

the following controller and observer gain matrices 

respectively with 0.05  

   1 23.343 0.098 1.254   ,  0.041 1.008 0.254     D D

1 2

9.022 4.533 9.022 0

5.976 8.965  , 5.976 0

2.046 3.569 3.046 0

   
   

   
   
      

E M M

3

1 2

0.688 1.056 504.851 752.266

10 * 0.399 0.584  ,  656.529 987.282

1.567 2.344 165.730 249.618

    
   

   
   
       

L L

   1 218.166 9.956 4.461  ,  47.110 27.882 13.229       
T T

J J

1 2

51.288 10.218 77.669 23.644 46.592 0.148

29.304 31.204 32.793  ,  53.635 17.602 25.086

112.873 80.082 15.084 14.954 1.058 9.543

      
   

     
   
        

H H

 

 
1 2

1 2

 4.511 2.988 1.523

1.523 2.988

 

     

T
 

 

The simulation results are shown in figures (1)-(4). The 

time-varying actuator fault and its estimate are depicted on 

Figure 1. It appears clearly the good estimation of this 

actuator fault. Furthermore, the BPI observer provides the 

fault estimation which errors are illustrated in the figures 2. 

One can shows the fault estimation error is zero-mean except 

at time 1s, 7s and 9s that suits abrupt changes of the fault. 

 

 
Fig 1.  Evolution of the fault and its estimate 

 

 
Fig 2.  Fault estimation error 
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Fig 3.  The output 

1( )y t

 

of the system: nominal output, 

output without FTC and output with FTC  

 

 
Fig 4.  The output 

2 ( )y t

 

of the system: nominal output, 

output without FTC and output with FTC  

 

The figures (3-4) compares the outputs of the nominal model, 

the outputs of the faulty system without FTC and the outputs 

with FTC. One can see that the trajectory of the system 

follows the trajectory of the reference model, even in fault 

case. It is clear that the proposed strategy is robust with 

respect to the actuator additive fault f(t) and with parametric 

uncertainties. Moreover, the BPI observer-based FTC 

scheme provides good results in the presence of 

norm-bounded parametric uncertainties, as shown in the 

figures. 

VII. CONCLUSION 

This paper proposes a state feedback fault tolerant control 

law methodology for T-S fuzzy bilinear systems. A T-S fuzzy 

BPI observer is designed for the proposed FTC strategy in 

order to simultaneously estimate time varying faults and state 

variables. This method aims to adapt the control law in order 

to compensate the effect of the time-varying faults by 

maintaining the stability of the system. The stability 

conditions of the designed observer and the state-feedback 

control has been provided and solved through a set of Linear 

Matrix Inequalities under equality constraints. Moreover, 

sufficient conditions for controller design based on state 

estimation for robust stabilization of T-S FBM with 

parametric uncertainties has been proposed. Finally, the 

performance of the proposed BPI observer based FTC 

approach has been given to an example in order to illustrate 

the validity of this method. 
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