

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-1, May 2016

 194 www.erpublication.org



Abstract— The problem of finding the shortest path between

two modes is a well known problem in network analysis.

Optimal routing has been widely studied for interconnection

network. This research considers the problem of finding the

shortest path in a wireless packet switch network system in the

University of Calabar environment, Calabar, Nigeria. Its

theoretical approach, implementation and application. First a

historical background of sp algorithm was given and basic

concepts of network analysis in connection with congestion and

delay issues were explored for the later use. The report was

concentrated on the modified Dijkstra’s algorithm and the open

shortest path first (OSPF) algorithm, use in finding single source

shortest path in a one-to-all undirected wireless packet switch

network system in the University of Calabar environment,

Calabar, Nigeria, with distance costs of links in order of O

(n+m) time, where n is the number of nodes and m is the number

of links in the network. The algorithm was presented in the

context of wireless packet switch network system in the

University of Calabar, Calabr, Nigeria. The aim of the research

is to designed a wireless packet switch network in the University

of Calabar environment with the objective of determining the

shortest path, dij taken by a message (packet) to traverse from a

source node (current) to a destination (sink) node considering

four different routes in the network system.

Index Terms— Graph, transit distance (dij) wireless packet

switch network adjacency list, adjacency matrix.

I. INTRODUCTION

In this research, our network model is abstracted as a graph

G (V, E). In graph theory, the shortest path problem is used to

determine the path between source vertices and destination

vertices (or nodes) such that the sum of the weights of its

constituent edges is minimized.

A graph G is a collection of two sets V and E where V is the

collection of vertices Vo, Vi, --- Vn-1also called nodes and E

is the collection of edges e1, e2, ----, en where an edge is an

arc which connects two nodes (Delling, 2008).

This can be represented as:

G = (V, E)

V (G) = (Vo, V1, ----, Vn) or set of vertices

E (G) = (e1, e2, en) or set of edges

In a graph structure, we have two major components

namely: nodes and edges. This we need to design the data

Ofem O. A., Department of Computer Science University of Calabar,

Nigeria

 Edim E. A., Department of Computer Science University of Calabar,

Nigeria

Ele S. I., Department of Computer Science University of Calabar, Nigeria

structure to keep these components in memory. There are two

ways of representing the graph in computer memory. First one

is the sequential representation and second one is the linked

list representation. Adjacency matrix is the matrix, which

keeps the information of adjacent nodes. In order words we

cannot say that this matrix keeps the information that whether

this node is adjacent to any other node or not. If the adjacency

matrix of the graph is sparese then it is better to represent the

graph through adjacency linked list. Our network model in the

University of Calabar is a sparese wireless, undirected packet

switch network thus we represent the graph using adjacency

priority linked list. In this adjacency link list representation of

the graph, we will, maintain two lists. First list will keep

information of all nodes in the graph and second list will

maintain a list of adjacency nodes for each node. There are

several cases in graph where we have a need to know the

shortest path from one node to another node. In our wireless

packet switch network, the switches or routers constitute the

nodes, while the distances between any two switches

constitute the edges of the network. Our problem definition is

to find the shortest path (dij) that a packet will take to traverse

from a source node to a destination node. Our research

scenario is a network routing concept.

There can be several paths for the packets to go from one

node to another node. But the shortest path is that path in

which the sum of weights of the included edges is the

minimum. There are several algorithms to determine or find

the shortest path in a network graph. Here we describe the

modified dikjstra’s algorithm (Ahn, Ramakrishna, Rang &

Choi, 2001).

 Fig. 1.0 A wireless packet switch network modeled as a

graph structure in the University of Calabar.

From the above graph structure, our objective is to find the

shortest path that a packet can traverse from the source node

to the destination node. The source node is node 1and the

destination node is node 6.

We label each node with transit distance or distance cost dij,

Shortest Path Determination in a Wireless Packet

Switch Network System in University of Calabar

Using a Modified Dijkstra’s Algorithm

Ofem O. A., Edim E. A., Ele S. I.,

Shortest Path Determination in a Wireless Packet Switch Network System in University of Calabar Using a

Modified Dijkstra’s Algorithm

 195 www.erpublication.org

predecessor, and status. Distance of node represents the

shortest distance of that node from the source node, and

predecessor of node represents the node which precedes the

given node in the shortest path from the source. Status of a

node can be permanent or temporary, making a node

permanent means that it has been included in the shortest path.

Temporary nodes can be relabeled if required but once a node

is made permanent it cannot be relabeled.

The procedure for our modified diskstra’s algorithm

1. Initially make source node permanent by assigning to it a

distance value of zero and make it the current working node.

All other nodes are made temporary, nodes that are directly

reachable from node. 1 have their temporary label equal to dij

while nodes that are not reachable from node 1 have to infinity

as their temporary labels.

2. Examine all the temporary neighbours of the current

working node and after checking the condition for minimum

weight, relabel the required nodes

3. From all the temporary nodes, find out the node which

has minimum value of distance, make this node permanent

and now this is our current working node.

4. When there is a tie in steps 2 and 3 choose any one but

exactly once.

5. Repeat steps 2,3 and 4 until destination node is made

permanent.

Advantages of our modified diskstra’s algorithm

1. With this algorithm, we can minimize our cost while

bulding a network. This is because the modified dijkstra’s will

find the shortest path value from a given source node to the

destination node. Therefore, we need not build much of

routers to build path from a node to other.

2. With this algorithm, we can also maximize the efficiency

of the system, since it will find out the minimum path value.

Recall that path weight is propagation delay for a system.

II. PROPOSED WORK

There are several cases in graph where we need to know the

shortest path from one node to another node. The following

domains of application of our algorithm follow this approach:

Robot path planning, logistic distribution, link-state routing

protocol, general electric supply system, water distribution,

railway track system, driving direction on websites, like map

quest or Google map, plant and facility layout arising in VLSI

design, transportation, and the traveling salesman problem

(Anjali, Datta & Joshi, 2016). In our wireless packet switch

network, our algorithm is very useful in the network for

routing concepts. There are several paths for going from one

node to another node. But the shortest path is the path in

which the sum of weights of the included edges is the

minimum. There are several algorithms to find out the shortest

path. Here we will describe the modified dijkstra’s algorithm.

We implement a total different concept to find out shortest

path using the scaled map of the University of Calabar. The

map which we are using is scaled map which return correct

distance between two switches or routers in our network. Here

we will use link list to store and traverse N nodes or vertices.

We label each node (switch) with distance predecessor and

status. Distance of node represents the shortest distance of

that node from the source node, and predecessor of node

represents the node which precedes the given node in the

shortest path from the source node, status of a node can be

permanent or temporary.

III. RESEARCH DESIGN PROBLEM AND FORMULATION

Earlier researchers have performed various operations on

Dijkstra’s algorithm to determine the shortest path between

the nodes and have got the better results in their researches for

the specified number of nodes. But, the results were limited to

the number of nodes fixed at the time while declaring the size

of the data structure.

Anjali, Datta & Joshi, (2016) referring to Fuhao ZHANG,

introduces the classical dijkstra’s algorithm in detail, and

describes the useful process of implementation of the

algorithm. It describes the adjacent node algorithm which is a

better optimization algorithm based on Dijkstra’s algorithm.

This algorithm makes correlation with each node in the

different network topology and information, and avoids the

use of co-related matrix that contains huge infinite value, and

making it more reliable and suitable analysis of the networks

for mass data (). It is prove that this algorithm can save a lot of

memory space and is more reliable to the network with huge

nodes, but it was found that as node grew larger this approach

gets slow in searching nodes.

In this research, our design problem is to design a wireless

network system in the University of Calabar, Calabar, Nigeria,

with the objective of determining the shortest path from the

source, (current) node to the destination (sink) node in an

undirected network system. Thus our model posses the

following attributes:

1. It is a single source shortest path problem in a one-to-all

network.

2. The edge lengths are non-negative

3. The graph is an undirected one

4. The shortest path is computed using just comparison and

addition model.

The attribute of a node in the network are:

1. Its distance value, and

2. Its status label

From our network design model in fig. 1.0, the model of

research is designed using the linked list priority queue data

structure. The simulation is done at different levels of

priorities. The priority levels are as follows;

At level 1:

Node 1 

Reachable nodes from node 1 are nodes 2, 3 and 4. The

temporary labels for these nodes are their direct distances

from node 1 to the node in question. No temporary label

distance is updated here from upper boundary to a lower

boundary (Goldberg, Kaplan, & Werneck, 2008). Nodes that

cannot be reached directly from node 1 have ∞ as their

temporary label. In this model, the researchers used full line

for edges that are reachable from the source nodes and broken

lines for edges that cannot be reached directly from the source

0

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-1, May 2016

 196 www.erpublication.org

node. Thus, the node model at this level is:

At level 2:

Compare the temporary labels of n2, n¬3 and n4 and make

the smallest of them the current permanent label. No

temporary label is updated at this stage.

Thus, if n2 < n3 and n2 < n4 then

pL = n2 else pL ≠ n2

:. Since 30 < 70 and 30 < 40

n2 

Thus, the logical structure of the model at level 2 becomes:

At level 3:

Update the temporary labels for the nodes that are directly

reachable from node 2; compare their TLs and make the

smallest TL a permanent label.

The new TL for node 3 = min {∞ , 30 + 20} = 50

 min {∞ , 0 + 70} = 70

 :. new TL for node 3 = 50

and new TL for node 6 = min {∞ , 30 + 90} = 120

now compare the TLs and make the smallest of them a

permanent label.

If n3 < n4 and n3 < n6 then

pL = n3 otherwise pL ≠ n3

:. Since the IF statement = False

 Another comparison was tested with n4

 IF n4 < n3 and n4 < n6 then

 pL = n4 Else pL ≠ n4

Since 40 < 50 and 40 < 120 then

n4 

Thus, the logical structure of the model at level 3 becomes:

At level 4:

Update temporary label for node 5:

TL(5) = min {∞ , 40 + 30} = 70

Compare TLS for n3, n5 and n6 and make the smallest a

permanent label.

If n3 < n5 and n3 < n¬6 then pL = n3

Else pL ≠ n3 since 50 < 70 and 50 < 120

n3 

Thus, the logical structure of the model at level 3 becomes:

At level 5:

Update temporary label for node 5 and 6

n5: min{∞ , 50 + 30} = 80

 min {∞ , 40 + 30} = 70

TL for n5 = 70

n6: min {∞ , 30 + 90} = 120

 min {∞ , 50 + 60} = 110

TL for n6 = 110

Now compare TLS for node 5 and 6 and make the smallest

a pL.

IF n5 < n¬6 then

n5 

Thus, the logical structure of the model at level 5 becomes:

30

40

50

70

Shortest Path Determination in a Wireless Packet Switch Network System in University of Calabar Using a

Modified Dijkstra’s Algorithm

 197 www.erpublication.org

At level 6:

Node 6 is the last node to be visited. Update the temporary

label of node 6 and make it permanent.

n6: min {∞ , 50 + 60} = 110

 min {∞ , 70 + 30} = 100

Thus, node 6 has a new TL of 100 and it is automatically

made permanent. The algorithm converges at this point. The

shortest path dij of the network mode is 100 and the path

length or link whose dij = 100 is the shortest path of the

network. From the logical simulation of the wireless packet

switch network model in the University of Calabar, the

shortest path for the packets to traverse from the source node

to the destination is as follows:

n1 n4 n5 n6

0 40 70 100

n1  n4  n5  n6

IF TL1 < TL2 < … < T < K

Then pL = TL1 otherwise pL ≠ TL1 subject to further

comparison and selection.

IV. RESEARCH FORMULATION

To resolve this problem and to give the best solution for

increasing number of nodes we used the priority queue link

list having the capacity to store N nodes with some constraints

containing the value predecessor, status and distance (Kiran

& Ranjit, 2010).

Problem: Given a graph G = {V, E} where V is the set of

nodes (or vertices) in G and E the set of edges in G, if n = |V|

is the number of vertices in G, then the size of the adjacency

matrix required to store G in a computer memory is n x n (or

n2):





























nnnnn

n

n

mmmm

mmmm

mmmm

m

321

2232221

1131211

....

....

....

...

...

It is required to represent G in a computer memory with an

adjacency matrix of size N<n2.

Solution

Consider a graph G having n = 6 nodes or vertices as

shown.

G requires a 6 x 6 (or 36) adjacency matrix to represent it in a

computer memory. This representation is shown below.





























030060900

300303000

030010040

60301002070

900020030

004070300

m

Notice that this adjacency matrix is a symmetric matrix that

is MT = M thus, mij = mij ij {1,2,3,4,5,6} and wij = 0 i =j.

Hence, if all duplicate is remove, starting from i = j downward,

as follows;

 30 70 40 0 0

 20 0 0 90

 10 30 60

 30 0

 0

Thus, the size of this new matrix is the sum of each row

given as 5 + 4 + 3 + 2 + 1 = 15. In general,

n - 1 + n - 2 + n - 3 + . . . n - (n - 1) = n (n - 1)

 2

Hence, the size of matrix N is

N = n (n - 1)

 2

Where n = number of nodes

Clearly N < n2. in fact.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-5, Issue-1, May 2016

 198 www.erpublication.org

Theorem: N is less than 50% of n2 that is, N < 50% n2.

Proof:

Suppose N = X% n2, then

N(n – 1) = xn2

 2 100 , n2 – n = xn2

 2 100

==> 100 (n2 – n) = 2xn2 ==> x = 50(n2 - n) = 50 n(n – 1)

 n2 n2

==> 50 – 50 =

x……………………………………………………….. (1)

 n

Since x depends on n, we can take limit as n ∞ :

lim x (n) = 50 and hence, the proof:

n

e.g in the above matrix, n = 6, thus, x (6) = 50 – 50/6 = 50 –

8.33

x(6) = 41.67% ==> 15 is 41.67% of 36

Therefore, percentage reduction = 100 – 41.67 = 58.33%

Instead of creating a multidimensional array M for storing

the graph G, we can rearrange the remaining elements of the

matrix M as follow;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

30 70 40 0 0 20 0 0 90 10 30 60 30 0 30

Observe that each element have been isolated with a faint

line while each row separated by thick line as shown above.

But matrix M is a 2-D array mij, hence, we need to provide an

interface for this new one dimensional array so as to make it

appear multi-dimensional.

Row Rm and Column Cij.

2-Dimensional array is divided into rows and columns. In

the case of matrix mij, i = row and j = column numbers. Hence,

we need to find a formula Rm for the row m and Cij for the

column C.

r1= 1 1st row begins at element 3

r2 = n – 1 +1 2nd row begins at element 2 => 6-1+1

r3 = n – 1 + n – 2 +1 3rd row beings at element 1 => 6-1+6-2+1

r4 = n – 1 + n – 2 + n – 3 +1 4th row begins at element 3 => 6-1+6-2+6-3+1

⁞ ⁞ “ “ “ “ “ “

rm =

n-1+n-2+n-3+…+n-(m-1)+1

rm = (m – 1) n - 






 

2

2)1(mm
2n (m -1) – m (m – 1) + 2

 2

Thus,

rm = (m – 1)(2n – m) + 1

…………………………………………………… (2)

 2

Equation (2) is the required formular for the row number m

If m = I, we have ri = (i – 1)(2n – i) + 1

 2

V. COLUMN

Given a pair of vertices i, j, where i<j, then the column

where the weight of the graph G is stored is given by.

Cij = j – i –

1 ………………………………………………………… (3)

i<j

Therefore, given two vertices (or nodes) i and j, the edge

from i to j or j to i is given by

Aij = ri +

Cij ……………………………………………………….. (4)

Equation (4) is the formular that turns A (a single

dimension array) into Aij (a multidimensional array).

Proof:

We must show that Mij = Aji ij {1,2,3,4,5,6}

M12 = 3,

A12 = r1 + C12 ((1 – 1)(2(6) – 1))/2 + 1 + (2 – 1 – 1)

A12 = 0 + 1 +2 – 2 = 1 check the index 1 in A

M35 = 3,

A35 = r3 + C35 ((3 – 1)(2(6) – 1))/2 + 1 + (5 – 3 – 1)

A35 = 12 + 1 = 13 ... check the index 3 in A □

VI. CONCLUSION

Our modified Dijkstra’s algorithm is an improved version

of the traditional Dijkstra’s algorithm. Currently, our

algorithm used priority queue with link list with some

constraints, plus one modified Dijkstra call. This modified

Dijkstra’s algorithm should improve the running time of our

algorithm by about 58.33% and the shortest path link is node

1 node 4 nodes 5 node 6 where node 1 is the source

(current) node while node 6 is the destination (sink) node in

our wireless packet switch network system in the University

of Calabar, Calabar, Nigeria.

REFERENCES

[1] Anjali, J., Datta, U. and Joshi, K. K. (2016). Modification in

Dijkstra’s Algorithm to Find the Shortest Path for ‘N’ Nodes with

Constraint. International Journal of Scientific Engineering and

Applied Science, 2(1).

[2] Ahn, C. W., Ramakrishna, R. S., Rang, C. G. & Choi, I. C. (2001).

“Shortest path routing algorithm using hopfield neural network”,

Electron. Lett., 37(19): 1176- 1178

[3] Delling, D. & Nannicini, G. (2008). Bidirectional Core-Based

Routing in Dynamic Time-Dependent Road Networks. In S.-H. Hong,

H. Nagamochi, and T. Fukunaga, editors, Proceedings of the 19th

International Symposiumon Algorithms and Computation (ISAAC

08), volume 5369 of Lecture Notes in Computer Science, pp.

813–824.

[4] Delling, D. (2008). Time-Dependent SHARC-Routing. In

Proceedings of the 16th Annual European Symposiumon Algorithms

(ESA’08), volume 5193 of Lecture Notes in Computer Science, pp.

332–343.

[5] Goldberg, A. V. Kaplan, H. & Werneck, R. F. (2008). Reach for A*:

Shortest Path Algorithms with Preprocessing. In C. Demetrescu, A. V.

Goldberg, and D. S. Johnson, editors, Shortest Paths: Ninth DIMACS

Implementation Challenge, DIMACS Book. American Mathematical

Society.

[6] https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Algorithm

[7] Kiran, Y. & Ranjit B., (2010). An Approach to Find Kth Shortest Path

using Fuzzy Logic. International Journal of Computational Cognition,

8(1)

