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 

Abstract—  The theory of optimization in machine learning 

has benefited from various fields of research.  Among these, 

nature-inspired meta-heuristic algorithms are becoming very 

powerful and increasingly popular in solving optimization 

problems and applications.  Some algorithms have strong 

similarities, while others may be directly based on or inspired by 

some core algorithms.  For most algorithms, we know their 

fundamental components, but how exactly they interact to 

achieve efficiency still remains partly unknown, which inspires 

more active studies.  It will also be valuable for providing new 

directions for further important modifications on these 

algorithms or even pointing out innovative ways of developing 

new algorithms.  In this paper, we propose some synergistic 

approaches to meta-heuristic search algorithms for optimization 

learning.  Among most machine learning algorithms for 

optimization problem including meta-heuristic search 

algorithms, the solution is drawn like a moth to a flame and 

cannot keep away.  That is, one of the major concerns in using 

learning algorithms to search complex state spaces is the 

problem of premature convergence.  It means loss of diversity in 

the process of evolution.  Maintaining a certain degree of 

diversity is widely believed to help avoid entrapment in 

non-optimal solutions.  The fine balance between intensification 

(exploitation) and diversification (exploration) is very important 

to the overall efficiency and performance of a meta-heuristic 

search algorithm.  Too little exploration and too much 

exploitation could cause the system to be trapped in local optima, 

which makes it very difficult or even impossible to find the 

global optimum.  All meta-heuristic algorithms use certain 

tradeoff between local search and global exploration.  The 

diversification via randomization provides a good way to move 

away from local search to the search on the global scale and 

avoids the solutions being trapped at local optima, while 

increases the diversity of the solutions.  The good combination of 

these two major components will usually ensure that the global 

optimality is achievable.  It is worth pointing that the use of a 

uniform distribution is not the only way to achieve 

randomization.  In fact, random walks such as Levy flights on a 

global scale are more efficient.  On the other hand, the track of 

chaotic variable can travel ergodically over the whole search 

space.  In general, the chaotic variable has special characters, i.e., 

ergodicity, pseudo-randomness and irregularity.  To enrich the 

searching behavior and to avoid being trapped into local 

optimum, chaotic sequence and a chaotic Levy flight are 

incorporated in the meta-heuristic search for efficiently 

generating new solutions.  In addition to chaotic dynamics, we 

also propose some ideas inspired by psychology model of 

emotion for use in meta-heuristic algorithms which promises 

greater efficiency and perhaps solvability of problems to an 

optimization approach.  We presented synergistic strategies for 

meta-heuristic optimization learning, with an emphasis on the 

balance between intensification and diversification.  It provides 

us with efficient tools to get better insight into learning 

mechanisms. 
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I. INTRODUCTION 

This paper explores optimization theory and algorithms based 

on computational intelligence for complex systems.  

Nature-inspired meta-heuristic algorithms are becoming 

increasingly popular in optimization and applications.  

Meta-heuristics is about emergent behavior and patterns, 

self-organization, and simple processes leading to complex 

results.  The meta-heuristics has ever since turned out to be a 

competitor in the field of numerical optimization.  There are 

many reasons for this popularity and success, and one of the 

main reasons is that these algorithms have been developed by 

mimicking the most successful processes in nature, including 

biological systems, and physical and chemical processes.  

From a practical viewpoint, evolutionary algorithms are 

population-based meta-heuristics that provide the human 

engineer with a set of tools to address particular optimization 

problems.  The core principles are built upon two 

complementary mechanisms, inspired from Darwin's original 

principles: blind variations (favoring the introduction of new 

candidates) and survival of the fittest (favoring pressure 

towards the best individuals).  For most algorithms, we know 

their fundamental components, how exactly they interact to 

achieve efficiency still remains partly a mystery, which 

inspires more active studies.  Several optimization techniques 

can be used, but we proposed here a simple yet effective 

meta-heuristic algorithm.  Cuckoo search is an optimization 

algorithm developed by Xin-she Yang and Suash Deb in 2009 

[8].  It was inspired by the obligate brood parasitism of some 

cuckoo species by laying their eggs in the nests of other host 

birds (of other species).  Cuckoo search idealized such 

breeding behavior, and can be applied for various 

optimization problems.  Bat-inspired algorithm is an another 

metaheuristic optimization algorithm developed by Xin-She 

Yang in 2010 [12].  This bat algorithm is based on the 

echolocation behavior of microbats with varying pulse rates 

of emission and loudness.  Furthermore, the firefly algorithm 

[13] is also a meta-heuristic algorithm, inspired by the 

flashing behavior of fireflies.  The primary purpose for a 

firefly's flash is to act as a signal system to attract other 

fireflies.  In firefly algorithm, the flashing light can be 

formulated in such a way that it is associated with the 

objective function to be optimized, which makes it possible to 

formulate the firefly algorithm.  Among most machine 

learning algorithms for optimization problem including 

meta-heuristic search algorithms, the solution is drawn like a 

moth to a flame and cannot keep away.  To enrich the 

searching behavior and to avoid being trapped into local 

optimum, some meta-heuristic search algorithms intended to 

introduce chaotic dynamics, Levy flights and psychology 
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model of emotion into the algorithm are presented in this 

paper.  We propose some synergistic approaches to 

meta-heuristic search optimization algorithms.  Some new 

approaches to cuckoo search algorithm, bat algorithm and 

firefly algorithm as the synergistic meta-heuristics are 

developed.  It provides us with efficient tools to get better 

insight into learning mechanisms.  In simulation, we illustrate 

the application of the synergistic search algorithm in 

meta-heuristics for the reconstruction of chaotic dynamics.  

The proposed method includes both effects of chaotic 

dynamics and psychology model of emotion based search 

algorithm.  Simulation results are provided to illustrate the 

effectiveness and feasibility of the proposed algorithm.  

 

II. META-HEURISTIC OPTIMIZATION SEARCH ALGORITHMS 

In this section, we will first discuss all the latest 

nature-inspired meta-heuristic algorithms including cuckoo 

search, bat-inspired algorithm and firefly algorithm. 

 

A. Meta-heuristic Cuckoo Search Algorithm 

Cuckoo Search is a meta-heuristic search algorithm which 

has been proposed recently by Yang and Deb [9].  The 

algorithm is inspired by the reproduction strategy of cuckoos.  

At the most basic level, cuckoos lay their eggs in the nests of 

other host birds, which may be of different species.  The host 

bird may discover that the eggs are not its own and either 

destroy the egg or abandon the nest all together.  This has 

resulted in the evolution of cuckoo eggs which mimic the eggs 

of local host birds [10].  To apply this as an optimization tool, 

Yang and Deb [9]  used three idealized rules: (1) Each cuckoo 

lays one egg, which represents a set of solution co-ordinates, 

at a time and dumps it in a random nest; (2) A fraction of the 

nests containing the best eggs, or solutions, will carry over to 

the next generation; (3) The number of nests is fixed and there 

is a probability that a host can discover an alien egg. If this 

happens, the host can either discard the egg or the nest and 

this results in building a new nest in a new location.  The steps 

involved in the Cuckoo Search are then derived from these 

rules and are shown in Fig. 1 [10].  An important component 

of a Cuckoo Search  is the use of Levy flights for both local 

and global searching.  The Levy flight process, which has 

previously been used in search algorithms [6], is a random 

walk that is characterized by a series of instantaneous jumps 

chosen from a probability density function which has a power 

law tail.  This process represents the optimum random search 

pattern and is frequently found in nature [7]. When generating 

a new egg in Fig. 1, a Levy flight is performed starting at the 

position of a randomly selected egg, if the objective function 

value at these new coordinates is better than another randomly 

selected egg then that egg is moved to this new position.  The 

scale of this random search is controlled by multiplying the 

generated Levy flight by a step size.  For example setting 

could be beneficial in problems of small domains, in the 

examples presented here   is used in line with the work by 

Yang and Deb [10].  Yang and Deb [9] do not discuss 

boundary handling in their formulation.  When a Levy flight 

results in an egg location outside the bounds of the objective 

function, the fitness and position of the original egg are not 

changed. One of the advantages of CS over PSO is that only 

one parameter, the fraction of nests to abandon, needs to be 

adjusted.  Yang and Deb [10] found that the convergence rate 

was not effected strongly by the value and they suggested 

setting  .  The use of Levy flights as the search method means 

that the Cuckoo Search can simultaneously find all optima in a 

design space and the method has been shown to perform well 

in comparison with PSO [10]. 

 

Cuckoo Search Algorithm 

----------------------------------------------------------------------- 

begin  

Objective function )(xf , T

dxxx ),,( 1  ; 

Initial a population of n host nests 
ix  ( ni ,,1  ); 

while ( t  < Maximum Generation) or (stop criterion); 

Get a cuckoo (say i ) randomly 

and generate a new solution by Levy flights; 

Evaluate its quality/fitness; 
iF  

Choose a nest among n (say j )  randomly; 

if  (
ji FF  ), 

Replace j  by the new solution; 

end 

Abandon a fraction (
aP ) of worse nests 

[and build new ones at new locations via Levy flights]; 

Keep the best solutions (or nests with quality solutions); 

Rank the solutions and find the current best; 

end while 

Post process results and visualization; 

end 

----------------------------------------------------------------------- 

Fig. 1. Pseudo code of the Cuckoo Search method 

 

B. Meta-heuristic Bat Search Algorithm 

Bat-inspired algorithm is a meta-heuristic search optimization 

developed by Xin-She Yang in 2010 [12].  This bat algorithm 

is based on the echolocation behavior of micro-bats with 

varying pulse rates of emission and loudness.  The 

idealization of the echolocation of micro-bats can be 

summarized as follows: Each virtual bat flies randomly with a 

velocity 
iv


 at position (solution) 
ix


 with a varying frequency 

or wavelength and loudness 
iA .  As it searches and finds its 

prey, it changes frequency, loudness and pulse emission rate.  

Search is intensified by a local random walk.  Selection of the 

best continues until certain stop criteria are met.  A detailed 

introduction of meta-heuristic algorithms including the bat 

algorithm is given by Yang [14].  The basic idea behind the 

Bat Algorithm is that a population of n  bats (possible 

solutions) of dimension d  use echolocation to sense distance 

and fly randomly through a search space updating their 

positions 
ix


 and velocities 

iv


.  Each solution 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-4, April 2016   

                                                                                                  91                                                                     www.erpublication.org 

 

T

di xxx ),,( 1 

  is evaluated by a fitness function )( ixf


, 

ni ,,1  .  The bats’ flight aims at finding food/prey (best 

solutions).  Two other parameters are: the loudness decay 

factor ( ) that acts in a similar role as the cooling schedule in 

the traditional simulated annealing optimization method, and 

the pulse increase factor (  ) that regulates the pulse 

frequency.  The properly update for the pulse rate (
ir ) and the 

loudness (
iA ) balances the exploitation and exploration 

behavior of each bat, respectively.  As the loudness usually 

decrease once a bat has found its prey/solution (in order to do 

not loss the prey), the rate of pulse emission increases in order 

to raise the attack accuracy.  The pseudo-code of the Bat 

Algorithm is shown in Fig. 2. In simulations, positions 
ix


 and 

velocities 
iv


 in a d -dimensional search space are updated.  

The new solutions t

ix


  and velocities t

iv


 at time step t  are 

given by 

   )( minmaxmin ffff i
                                           (1) 

  
i

t

i

t

i

t

i fxxvv  


)(

1 
                                               (2) 

  t

i

t

i

t

i vxx



1                                                               (3) 

where ]1,0[  is a random vector drawn from a uniform 

distribution.  Here 
x


  is the current global best location 

(solution) which is located after comparing all the solutions 

among all the n  bats.  For the local search part, once a 

solution is selected among the current best solutions, a new 

solution for each bat is generated locally using random walk 

  t

oldnew Axx 


                                                           (4) 

where ]1,1[  is a random number, while tA  is the 

average loudness of all the bats at this time step.  Furthermore, 

the loudness 
iA  and the rate 

ir  of pulse emission have to be 

updated accordingly as the iterations proceed.  As the 

loudness usually decreases once a bat has found its prey, 

while the rate of pulse emission increases. 

        t

i

t

i AA 
1                                                                  (5) 

        )1(
01 t

i

t

i err 
                                                      (6) 

where    In fact,  is similar to the 

cooling factor of a cooling schedule in the simulated 

annealing.  For any 10    and 0 , we have 0
t

iA , 

0

i

t

i rr  , as t .  Their loudness and emission rates will 

be updated only if the new solutions are improved, which 

means that these bats are moving towards the optimal. 

solution. 

 

Bat Algorithm 

----------------------------------------------------------------------- 

Objective function )(xf


, T

dxxx ),,( 1 

 ; 

Initialize the bat population 
ix


 ( ni ,,1  ) and 

iv


 

Define pulse frequency 
if  at 

ix


 

Initialize pulse rates
ir  and the loudness 

iA  

Generate new solutions by adjusting frequency, 

and updating velocities and locations/solutions [equations (1) 

to (3)] 

if (rand >
ir ) 

Select a solution among the best solutions 

Generate a local solution around the selected best solution 

end if 

Generate a new solution by flying randomly 

if (rand <
iA  & )( ixf


 < )( xf


) 

Accept the new solutions 

Increase 
ir  and reduce 

iA  

end if 

Rank the bats and find the current best 
x


 

end while 

Post process results and visualization 

----------------------------------------------------------------------- 

Fig. 2. Pseudo code of the bat algorithm 

 

The update of the velocities and positions of bats have some 

similarity to the procedure in the standard particle swarm 

optimization [2] as 
if  essentially controls the pace and range 

of the movement of the swarming particles.  To a degree, Bat 

Algorithm can be considered as a balanced combination of the 

standard particle swarm optimization and the intensive local 

search controlled by the loudness and pulse rate. 

 

C. Meta-heuristic Firefly Search Algorithm 

The Firefly Algorithm (FA) is a meta-heuristic, 

nature-inspired, optimization algorithm which is based on the 

social (flashing) behavior of fireflies, or lighting bugs, in the 

summer sky in the tropical temperature regions [13][14].  It 

was developed by Dr. Xin-She Yang at Cambridge University 

in 2007, and it is based on the swarm behavior such as fish, 

insects, or bird schooling in nature.  In particular, although the 

firefly algorithm has many similarities with other algorithms 

which are based on the so-called swarm intelligence, such as 

the famous Particle Swarm Optimization (PSO), Artificial 

Bee Colony optimization (ABC), and Bacterial Foraging 

(BFA) algorithms, it is indeed much simpler both in concept 

and implementation [13][14]. Furthermore, according to 

recent bibliography, the algorithm is very efficient and can 

outperform other conventional algorithms, such as genetic 

algorithms, for solving many optimization problems; a fact 

that has been justified in a recent research, where the 

statistical performance of the firefly algorithm was measured 

against other well-known optimization algorithms using 

various standard stochastic test functions [13][14].  Its main 

advantage is the fact that it uses mainly real random numbers, 

and it is based on the global communication among the 

swarming particles (i.e., the fireflies).  The firefly algorithm 

has three particular idealized rules which are based on some 

of the major flashing characteristics of real fireflies [13][14].  

These are the following: (1) all fireflies are unisex, and they 

will move towards more attractive and brighter ones 

regardless their sex.  (2) The degree of attractiveness of a 

firefly is proportional to its brightness which decreases as the 

distance from the other firefly increases due to the fact that the 

air absorbs light.  If there is not a brighter or more attractive 

firefly than a particular one, it will then move randomly.  (3) 

The brightness or light intensity of a firefly is determined by 

the value of the objective function of a given problem.  For 

maximization problems, the light intensity is proportional to 

the value of the objective function.  In the firefly algorithm, 

the form of attractiveness function of a firefly is the following 

monotonically decreasing function [13][14]: 

)exp()( 0

mrr   , with 1m                                  (7)                                                                      
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where, r  is the distance between any two fireflies, 
0  is the 

initial attractiveness at 0r , and  is an absorption 

coefficient which controls the decrease of the light intensity.  

The distance between any two fireflies i and j , at positions 

ix  and 
jx , respectively, can be defined as a Cartesian or 

Euclidean distance as follows [13][14]: 





d

k

kjkijiij xxxxr
1

2

,, )(                                     (8)                                                                               

where 
kix ,

 is the kth component of the spatial coordinate 
ix  

of the ith firefly and d is the number of dimensions we have.  

However, the calculation of distance r can also be defined 

using other distance metrics, based on the nature of the 

problem, such as Manhattan distance or Mahalanobis distance.  

The movement of a firefly i which is attracted by a more 

attractive (i.e., brighter) firefly j is given by the following 

equation [13][14]: 

iijijii xxrxx   )()exp( 2

0
                       (9)                                                                

where the first term is the current position of a firefly, the 

second term is used for considering a firefly’s attractiveness 

to light intensity seen by adjacent fireflies, and the third term 

is used for the random movement of a firefly in case there are 

not any brighter ones.  The coefficient   is a randomization 

parameter determined by the problem of interest, while 
i  is 

a vector of random numbers drawn from a Gaussian 

distribution or uniform distribution.  As we will see in this 

implementation of the algorithm, we will use 0.10  , 

]1,0[ , and the attractiveness or absorption coefficient 

0.1 , which guarantees a quick convergence of the 

algorithm to the optimal solution.  The convergence of the 

algorithm is achieved for any large number of fireflies (n) if n 

>> m, where m is the number of local optima of an 

optimization problem [11].  In this case, the initial location of 

n fireflies is distributed uniformly in the entire search space.  

The convergence of the algorithm into all the local and global 

optima is achieved, as the iterations of the algorithm continue, 

by comparing the best solutions of each iteration with these 

optima.  However, it is under research a formal proof of the 

convergence of the algorithm and particularly that the 

algorithm will approach global optima when n  and 

1t [11].  In practice, the algorithm converges very quickly 

in less than 80 iterations and less than 50 fireflies, as it is 

demonstrated in several research papers using some standard 

test functions [11].  Indeed, the appropriate choice of the 

number of iterations together with the  ,  ,   and n  

parameters highly depends on the nature of the given 

optimization problem as this affects the convergence of the 

algorithm and the efficient find of both local and global 

optima.  Note that the firefly algorithm has computational 

complexity of )( 2nO , where n is the population of fireflies.  

The larger population size becomes the greater the 

computational time is [11].  There are two important special 

cases of the firefly algorithm based on the absorption 

coefficient  ; that is, when 0 and  [1].  When 

0 , the attractiveness coefficient is constant
0 , and the 

light intensity does not decrease as the distance r between two 

fireflies increases.  Therefore, as the light of a firefly can be 

seen anywhere, a single local or global optimum can be easily 

reached.  This limiting case corresponds to the standard 

Particle Swarm Optimization (PSO) algorithm.  On the other 

hand, when  , the attractiveness coefficient is the Dirac 

delta function )()( rr   . In this limiting case, the 

attractiveness to light intensity is almost zero, and as a result, 

the fireflies cannot see each other, and they move completely 

randomly in a foggy place. Therefore, this method 

corresponds to a random search method.  In a recent 

bibliography, a new meta-heuristic algorithm has been 

developed and formulated based on the concept of 

hybridizing the firefly algorithm. In particular, the new Levy 

flight firefly algorithm was developed by Dr. Xin-She Yang at 

Cambridge University in 2010 and it combines the firefly 

algorithm with the Levy flights as an efficient search strategy 

[15].  It combines the three idealized rules of the firefly 

algorithm together with the characteristics of Levy flights 

which simulate the flight behavior of many animals and 

insects. In this algorithm, the form of the attractiveness 

function and the calculation of distance between two fireflies 

are the same as in firefly algorithm, but in the movement 

function, the random step length is a combination of the 

randomization parameter together with a Levy flight.  In 

particular, the movement of a firefly is a random walk, where 

the step length is drawn by the Levy distribution [15]. 

 

III. SYNERGISTIC OPTIMIZATION LEARNING FOR 

INTENSIFICATION AND DIVERSIFICATION BALANCE 

In this section, we propose some synergistic strategies for 

meta-heuristic optimization learning algorithms.  The 

proposed methods include effects of chaotic dynamics, Levy 

flights and a psychology model of emotion.  Two important 

characteristics of meta-heuristics are: intensification and 

diversification.  Intensification (exploitation) intends to 

search locally and more intensively, while diversification 

(exploration) makes sure the algorithm explores the search 

space globally (hopefully also efficiently).  Too little 

exploration and too much exploitation could cause the system 

to be trapped in local optima, which makes it very difficult or 

even impossible to find the global optimum.  On the other 

hand, if too much exploration but too little exploitation, it may 

be difficult for the system to converge and thus slows down 

the overall search performance.  One of the main tasks of 

designing new algorithms is to find a certain balance 

concerning this optimality and/or tradeoff. 

A. Chaotic Levy Flight Bat Search Algorithm 

One of the major concerns in using evolutionary algorithms 

to search complex state spaces is the problem of premature 

convergence.  While premature convergence may be defined 

as the phenomenon of convergence to non-optimal solutions, 

move-generation (new solutions) means loss of diversity in 

the process of evolution.  Maintaining a certain degree of 

diversity is widely believed to help avoid entrapment in 

non-optimal solutions. 

 

Chaotic Levy Flights for Move-Generation 

 

The notion of ergodicity asserts that a system having a number 

of possible states will, over a finite time, visit each one with 

equal frequency [1].  The track of chaotic variable can travel 

ergodically over the whole search space.  In general, the 

chaotic variable has special characters, i.e., ergodicity, 
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pseudo-randomness and irregularity.  Furthermore, the Levy 

flight process, which has previously been used in search 

algorithms [6], is a random walk that is characterized by a 

series of instantaneous jumps chosen from a probability 

density function which has a power law tail. This process 

represents the optimum random search pattern and is 

frequently found in nature [7].  Broadly speaking, Levy flight 

is a random walk whose step length is drawn from the Levy 

distribution.  Here we propose the chaotic Levy flight for the 

improved bat algorithm.  In this paper, the well-known 

logistic map which exhibits the sensitive dependence on 

initial conditions is employed to generate the chaotic 

sequence 
sc  for the parameter in Levy flight:  

))(1()(0.4)1( tctctc sss  , 1)0(0  sc     (10)                                           

On the other hand, due to infinite variance of Levy 

distribution, it permits occasionally long steps (the so called 

Levy flights) far from the neighborhood of the previous 

sample.  Setting a smaller neighborhood range, and making 

small jumps, is helpful for finding optimum solutions in the 

region.  However, large jumps are needed to avoid locals. 

Usually, there is no perspective to specify the 

above-mentioned regions. There is no specific definition of 

the mean and the variance of chaotic sequences.  Thus, a 

combination of a chaotic sequence and Levy random process 

may result in better answers.  In the proposed synergistic 

search algorithms, a new method to search a neighborhood is 

introduced.  The new neighbor generation method is shown in 

the following equation: 

              )(Levycxx soldnew                                   (11)                                                           

Levy distribution and a chaotic sequence are used to generate 

)(Levy  and 
sc  respectively.  The product   means 

entry-wise multiplications.  Levy flights essentially provide a 

random walk, while their random steps are drawn from a Levy 

distribution for large steps 
 tuLevy ~ , ( 31   )                                     (12)                                                             

which has an infinite variance with an infinite mean.  Because 

the chaotic sequence can generate several neighborhoods of 

suboptimal solutions to maintain the variability in the 

solutions, it can prevent the search process from becoming 

premature.  Due to its ergodicity, chaotic sequence can 

generate several neighborhoods of near-optimal solutions.  

The algorithm probably converges to a space in the search 

space where good solutions are denser.  The new solutions t

ix


  

and velocities t

iv


 at time step t  are then given by 

     
si cffff  )( minmaxmin
                                           (13)                                                            

i

t

l

t

ii

t

g

t

i

t

i

t

i fxxfxxvv 


)()(
1 

                        (14)                                                          

t

i

t

i

t

i vxx



1                                                               (15)                                                     

where t

gx


 is the global best of all the bats and t

lx


 is the local 

best of each bat.  Any single bat is following the best hunting 

position found by not only taking all bats into consideration, 

but also its own preference when searching for food.  The 

reason for this added parameter in the velocity equation is 

because by choosing its own local hunting area the 

exploitation of the algorithm will be increased.  The 

pseudo-code of the proposed Chaotic Levy Flight Bat 

Algorithm is shown in Fig. 3. 

 

Chaotic Levy Flight Bat Algorithm 

----------------------------------------------------------------------- 

Objective function )(xf


, T

dxxx ),,( 1 

 ; 

Initialize the bat population 
ix


 ( ni ,,1  ) and 

iv


 

Define pulse frequency 
if  at 

ix


 

Initialize pulse rates
ir  and the loudness 

iA  

Generate the chaotic sequence 
sc  

Compute )( ixf


 

Find the current best 
x


 

Generate new solutions by adjusting frequency, 

and updating velocities and locations/solutions [equations (13) 

to (15)] 

if (
sc  >

ir ) 

Select a solution among the best solutions 

Generate a local solution around the selected best solution  

by flying randomly via chaotic Levy flights using equation 

(11) 

end if 

Generate a new solution by flying randomly via chaotic 

Levy flights using equation (11) 

if (
sc  <

iA  & )( ixf


 < )( xf


) 

Accept the new solutions 

Increase 
ir  and reduce 

iA  

end if 

Rank the bats and find the current best 
x


 

end while 

Post process results and visualization 

----------------------------------------------------------------------- 

Fig. 3. Pseudo code of the proposed chaotic Levy flight bat 

algorithm 

 

B. Chaotic Levy Flight Firefly Search Algorithm 

Generally, the parameter    in equation (9) is the key factor 

to affect the convergence of firefly algorithm.  In fact, 

however, it cannot ensure the optimization’s ergodicity 

entirely in phase space because they are absolutely random in 

the firefly algorithm.  Here we propose the chaotic Levy flight 

for the improved firefly algorithm. 

 

Chaotic Levy Flights for Move-Generation of Firefly 

Algorithm 

 

In the proposed algorithm, a new method to search a 

neighborhood is introduced.  The new neighbor generation 

method is shown in the following equation: 

)()()exp( 2

0  Levycxxrcxx sijijsii         (16)                                              

Levy distribution and a chaotic sequence are used to generate 

)(Levy  and 
sc  respectively.  The product   means 

entry-wise multiplications.  Levy flights essentially provide a 

random walk, while their random steps are drawn from a Levy 

distribution for large steps 
 tuLevy ~ ,( 31   )                                           (17)                                                                                       

which has an infinite variance with an infinite mean.  Because 

the chaotic sequence can generate several neighborhoods of 

suboptimal solutions to maintain the variability in the 

solutions, it can prevent the search process from becoming 

premature [3].  Due to its ergodicity, chaotic sequence can 

generate several neighborhoods of near-optimal solutions.  

The algorithm probably converges to a space in the search 
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space where good solutions are denser.  The proposed chaotic 

Levy flight firefly algorithm is shown in Fig. 4. 

 

Chaotic Levy Flight Firefly Algorithm 

----------------------------------------------------------------------- 

begin 

Objective function )(xf , T

dxxx ),,( 1  ; 

Generate initial population of  fireflies
ix  ( ni ,,1  ) 

Light intensity 
iI  at 

ix  is determined by )( ixf  

Defined light absorption coefficient   

while ( t  < Maximum Generation) 

for ni :1  all n  fireflies 

for ij :1  all n  fireflies 

      if  (
ij II  ), 

Move firefly i  towards j  in d-dimension via  

chaotic Levy flights using equation (5) 

      end if 

      Attractiveness varies with distance r via )exp( 2r  

      Evaluate new solutions and update light intensity 

   end for j  

end for i  

Rank the fireflies and find the current best 

end while 

Post process results and visualization 

end 

----------------------------------------------------------------------- 

Fig. 4. Pseudo code of the proposed chaotic Levy flight firefly 

algorithm 

 

C. Emotional Chaotic Cuckoo Search Algorithm 

Similarly, the parameter    in Levy flight is the key factor to 

affect the convergence of cuckoo search algorithm.  It cannot 

ensure the optimization’s ergodicity entirely in phase space 

because they are absolutely random in the cuckoo search 

algorithm.    Here we propose the chaotic Levy flight for the 

move-generation of the cuckoo search algorithm.  In addition, 

psychology model of emotion and chaotic sequence are also 

incorporated in the move-acceptance of the cuckoo search 

algorithm. 

 

Psychology Model of Emotion and Chaotic Sequence for 

Move-Acceptance of Cuckoo Search Algorithm 

 

Among most machine learning algorithms for optimization 

problem including meta-heuristic search algorithms, the 

solution is drawn like a moth to a flame and cannot keep away.  

To enrich the searching behavior and to avoid being trapped 

into local optimum, psychology model of emotion and chaotic 

sequence is proposed for move acceptance decision in cuckoo 

search algorithm.  In psychology, emotion is considered a 

response to stimulus that involves characteristic physiological 

changes—such as increase in pulse rate, rise in body 

temperature, etc.  Weber, the first psychologist who 

quantitatively studies the human response to a physical 

stimulus, found that the response was proportional to a 

relative increase in the weight.  By Weber-Fechner Law, the 

relationship between stimulus and perception is logarithmic.  

This logarithmic relationship means that if the perception is 

altered in an arithmetic progression the corresponding 

stimulus varies as a geometric progression.  That is to say, if 

the weight is 1 kg, an increase of a few grams will not be 

noticed.  Rather, when the mass in increased by a certain 

factor, an increase in weight is perceived.  If the mass is 

doubled, the threshold is also doubled.  This kind of 

relationship can be described by a differential equation as: 

  

dS
dp k

S


                                                                (18) 

  

where dp  is the differential change in perception, dS  is the 

differential increase in the stimulus and S  is the stimulus at 

the instant.  A constant factor k  is to be determined 

experimentally.  Integrating the above equation. 

lnp k S C 
                                                               (19) 

  

with C  is the constant of integration, ln  is the natural 

logarithm.  To determine C , put 0p , i.e. no perception; 

then 

0lnC k S 
                                                               (20) 

  

where 
0S  is that threshold of stimulus below which it is not 

perceived at all, and can be called Absolute Stimulus 

Threshold (AST).  Therefore, the equation becomes: 

       0

ln
S

p k
S

 

                                                             (21) 

  

For the proposed emotional chaotic cuckoo search algorithm, 

we define only two emotions cuckoos could have, positive 

and negative, and correspond to two reactions to perception 

respectively as follow: 

IF (
ss ec  )  THEN positive 

                         ELSE negative 

where sc  is the chaotic sequence number.  The emotion of 

cuckoos can determine by pes  .  Here are two only two 

emotions cuckoo could have, positive and negative, and 

correspond to two reactions to perception respectively.  The 

perception of cuckoo can be described by following: 

  0

))()((
ln

S

xFxFS
ke

ji

s




                                      (22) 

Here 
0S  means stimulus threshold, S  means stimulus 

function.  )(F  is a fitness function.  A candidate move is 

generated by chaotic Levy flight, and the system must decide 

whether to ―accept‖ that move, based upon the chaotic 

sequence number and emotion factor.  This process of move 

generation (by chaotic Levy flight) and move acceptance is 

repeated.  This mechanism enables a system to transcend 

fitness barriers, thereby moving from one valley in the fitness 

landscape to another.  The decision to accept new solutions is 

based on the acceptance criterion.  We apply the psychology 

factor of emotion, which is given by (8): 

),1min(}{ seacceptP                                                (23)

            

This criterion produce real numbers in )1,0[ interval as the 

acceptance probability, which are used in the algorithm in the 

decision making process.  Random numbers are replaced by 

chaotic sequence.  The proposed algorithm compares the 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-4, April 2016   

                                                                                                  95                                                                     www.erpublication.org 

 

value of }{acceptP  with a value from a chaotic sequence.  

The proposed emotional chaotic cuckoo search algorithm is 

shown in Fig. 5.  The chaotic sequence used in this part 

produces not just a gradual divergence of the sequences of 

values, but also an exponential divergence, bringing the 

complexity and unpredictability features of chaotic theory 

into the proposed algorithm.  Hence, the probability of 

evading local minima increases dramatically.  The distinctive 

characteristics of the emotional chaotic cuckoo search 

algorithm are listed below to recapitulate the main proposal: 

 Improved quality of the neighborhood search, and neighbor 

selection, using a chaotic sequence and a Levy random 

number generator. 

 Increased probability of escaping from local minima by 

using the new acceptance criterion and the new method 

of space search. 

 

 

Emotional Chaotic Cuckoo Search Algorithm 

----------------------------------------------------------------------- 

begin  

Objective function )(xf , T

dxxx ),,( 1  ; 

Initial a population of n host nests 
ix  ( ni ,,1  ); 

while ( t  < Maximum Generation) or (stop criterion); 

Get a cuckoo (say i ) randomly 

and generate a new solution by Chaotic Levy flights; 

Evaluate its quality/fitness; 
iF  

Choose a nest among n (say j )  randomly; 

if  (
ji FF  ), 

Replace j  by the new solution; 

else if  (
ss ec  ) , 

Replace j  by the new solution; 

end 

Abandon a fraction (
aP ) of worse nests 

[and build new ones at new locations via Chaotic Levy 

flights]; 

Keep the best solutions (or nests with quality solutions); 

Rank the solutions and find the current best; 

end while 

Post process results and visualization; 

end 

----------------------------------------------------------------------- 

Fig. 5. Pseudo code of the proposed Emotional Chaotic 

Cuckoo Search Algorithm 

 

IV. SIMULATION AND APPLICATIONS 

For applications, we [4] applied the synergistic meta-heuristic 

optimization algorithms for the problem of parameter 

estimation (model calibration) in nonlinear dynamic models 

of biological systems.  We applied the proposed optimization 

search algorithm and described a general methodology to 

adaptively select the values of the model parameters for the 

reconstruction of biological system dynamics.  We illustrate 

the application of the method by jointly estimating the 

parameter vector of the dynamics of endocytosis.  We also 

applied these optimization algorithms for the unsupervised 

robotic learning such as the maze exploration problem [5].  

The proposed algorithms with quite general objective 

function are used to study the ability to develop unsupervised 

robotic learning.   In this section, for simulation, we illustrate 

the application of the method for the reconstruction of chaotic 

dynamics.  Simulation results are provided to illustrate the 

effectiveness and feasibility of the proposed algorithm by 

jointly estimating the complete parameter vector of a Lorenz 

system. 

 

The rich nonlinear dynamics of chaos allows to model a broad 

variety of relevant systems in different fields of science and 

engineering, including complex biological structures and 

processes.  The system of interest is usually observed through 

some time series and the modeling problem consists of 

adjusting the parameters of a model chaotic system until its 

dynamics is matched to the reference time series.  It is often 

convenient to assume that the observed time series are 

originated by a primary chaotic system, with unknown 

parameters, that drives a coupled secondary chaotic system.  

If the coupling is suitable to lead the secondary system into 

the same behavior as the primary one when they share the 

same parameter values, the modeling problem reduces to the 

optimization of the secondary parameters in order to attain 

synchronization.  Moreover, we can re-state the problem of 

parameter optimization as one of parameter identification, 

since the secondary parameters become estimates of the 

primary ones.  In this section, we propose a new method for 

parameter identification in coupled chaotic systems that can 

be applied to a wide range of problems.  Let us refer to the 

device generating the observed time series as the primary 

system, while the secondary system is the model with 

parameters to be adjusted.  Both systems are coupled in a way 

that ensures synchronization when they are identical, i.e., 

when the parameters in the model exactly coincide with the 

primary system parameters.  However, since the latter are 

unknown, the time evolution of the secondary system state 

variables is, in principle, different from that of the primary 

system.  Our aim is to derive an algorithm that adaptively 

adjusts the model parameters until its response is matched to 

the observed time series.  When this is achieved (according to 

an adequate criterion), the secondary system is synchronized 

and its parameters are estimates of the true parameters in the 

primary system.  To be specific, let 

     ),( pxfx                                                                    (24)                                                                                       

represent the primary system with state variables 
nRx , 

and unknown parameters 
mRp .  Notice that x  represents 

the temporal derivative of x .  For conciseness, we usually 

leave the time dependence of dynamic variables implicit.  If 
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the functional form of equation (24) is known, we can build 

the secondary system as  

),( qyfy                                                                     (25)                                                                                                         

where nRy  are the state variables and mRq  are the 

parameters.  We assume that there exists a unidirectional 

coupling scheme using any signal output of the primary 

system (equation (24)) which enables asymptotic 

synchronization of the secondary system (equation (25)), i.e., 

xy   as t , as long as pq  .  Notice that techniques 

are now available which enable the design of an unidirectional 

scheme which guarantees synchronization.  The system in 

equation (25) is fully observed and we assume the ability to 

periodically change the value of the parameter vector q .  

Finally, let kn RRxh :)(  be the time series we observe 

from the primary system, which consists of a subset of the 

dynamic variables in equation (24).  It is assumed that )(xh  

contains, at least, the signals needed for adequate coupling of 

the systems.  Our aim is to devise an algorithm to adaptively 

adjust the parameters in the secondary system, q , until the 

system variables, y , and the parameters themselves converge 

to their counterparts in the primary system, i.e., both xy   

and pq  .  In this way, synchronization between both 

systems is achieved and the parameters of the primary system 

are identified.  Let NT

N Rxxx  ],,[ 1   be the state vector 

of the chaotic system, x  is the derivative of the state vector 

x .  Based on the measurable state vector T

Nxxx ],,[ 1  , 

for individual i , we define the following fitness function 





k

t

iNNii txtxtxtxF
0

22

11 )))()(())()(((            (26)                                         

where kt ,,0  .  Therefore, the problem of parameter 

identification is transformed to that of using the proposed 

emotional chaotic cuckoo search algorithm to search for the 

suitable value of the parameter q  such that the fitness 

function is globally minimized. 

In order to evaluate the proposed parameter identification 

strategy, the Lorenz system are employed in the simulation 

study.  Let us consider a primary system that obeys the Lorenz 

equations  

21313

312112

2111 )(

xxxbx

xxxxrx

xxx











 
                                            (27)                                                                                   

where 3

321 ],,[ Rxxxx T   is the dynamic system state and 

3

111 ],,[ Rbrp T    contains the parameters.  The system is 

in the chaotic state when 101  , 281 r , 3/81 b .  In order 

to estimate, let the parameters of the Lorenz system be 

101  , 281 r , 3/81 b .  The secondary systems is 

      

21323

312122

2121 )(

yyyby

yyyyry

yyy









 
                                              (28)                                                                              

where 3

321 ],,[ Ryyyy T   are the state variables and 

3

222 ],,[ Rbrq T    are the parameters that can be adjusted 

in order to estimate p  and attain synchronization.  In order to 

observe nonlinear dynamical searching process of the 

emotional chaotic cuckoo search algorithm as a whole, we 

plot search values of all the individuals for parameters 
1 , 

1r , 

1b  in Fig. 6-8.  From Fig. 6-8, we can see that the trajectories 

of the identification of the parameters converge at the real 

values of the parameters, indicating that the model of our 

proposed emotional chaotic cuckoo search algorithm can be 

used as an effective optimization model.  Fig. 9 shows the 

identification of the parameters 
1 , 

1r , 
1b  in Lorenz system 

for the best fitness evolution.  Fig. 10 shows the evolution of 

fitness function.  Fig. 11 shows the reconstruction of Lorenz 

system.  Simulation results show that the proposed method 

can provide greater efficiency and satisfactory accuracy. 

 

 
Fig. 6. Identification of the parameter 

1  in Lorenz system 

 

 

 

 
Fig. 7. Identification of the parameter 

1r  in Lorenz system 

 

 

 

 
Fig. 8. Identification of the parameter 

1b in Lorenz system 
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Fig. 9. Identification of the parameters 

1 , 
1r , 

1b in Lorenz 

system for the best fitness evolution 

 

 
Fig. 10. Fitness function evolution 

 

 

 

 
Fig. 11. Reconstruction of Lorenz System 

 

V. CONCLUSION 

In this paper we have proposed some synergistic 

meta-heuristic optimization algorithms. The proposed 

methods include effects of chaotic dynamics, Levy flights and 

a psychology model of emotion.   Due to the easy 

implementation and special ability to avoid being trapped in 

local optima, chaos has been a good optimization technique 

and chaos-based searching algorithms have aroused intense 

interests.   Simulation results of Lorenz system are provided to 

illustrate the effectiveness and feasibility of the proposed 

algorithm.  Furthermore, one may hope that the further 

elaboration of optimization theory and algorithms based on 

computational intelligence for complex systems by using 

simple rules for complex intelligent behaviors will contribute 

to an interdisciplinary field of research. 
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