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 

Abstract— This paper presents an introduction to Dirac's 

theory addressed to students who are beginning a postgraduate 

program in physics and which have acquired a suitable 

grounding in quantum physics and special relativity theory at 

the level of standard text books related with these topics. The 

aim of this article is to bring the concepts of relativistic quantum 

mechanics closer to these students as an introduction and 

motivation for research in current and future applications, such 

as those related with spintronics, positron emission devices and 

quantum information technology. 

 

Index Terms— Electron, Hamiltonian, Lorentz 

transformations, relativistic energy, wave function.  

I. INTRODUCTION 

  In undergraduate levels of physics careers students acquire 

basic groundings in special relativity theory and 

non-relativistic quantum physics. Concerning with relativity 

theory they mainly learn the basic principles, Lorentz 

transformations, relativistic dynamics and equivalence 

between mass and energy [1]-[3]. In relation with 

non-relativistic quantum physics the main topics they learn 

are the wave-particle duality of light and particles like 

electrons, the Schrödinger’s equation and its applications for 

some typical situations which can be studied in one dimension 

(for example the quantization of the energy in an infinite 

potential box and the corresponding wave functions). The 

model of the atom is described by means of the solutions of 

Schrödinger’s equation in spherical coordinates and 

explaining how they lead to the quantum numbers associated 

with energy, angular momentum magnitude and its projection 

in the z direction [4]. The concept of spin is briefly introduced 

in the context of Stern-Gerlach experiment and its orientation 

is related with a fourth quantum number for the quantum 

description of the atom [5]-[6]. A rough description of the 

spin is given by an analogy with an intrinsic angular 

momentum of a particle. Due to restrictions in the duration of 

these careers it is not possible to include topics related with 

relativistic quantum mechanics, so that a knowledge about 

Dirac's theory and some of its issues like antiparticles and a 

formal justification of the spin property, are out of the scope 

of students of these careers unless they become incorporated 

to a postgraduate program which includes at least a course on 

Quantum Mechanics and its applications. Nevertheless the 

current technological developments in electronic systems 

imply an increasing requirement that future physics 

researchers related with this area acquire the basic tools for 

getting a deeper knowledge of issues like positrons and the 
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spin of a particle like an electron, which require at least of a 

basic understanding of Dirac theory. This will allow them to 

get a better understanding of effects like magnetic nuclear 

resonance [7]-[8] and positron emission tomography devices 

[9]-[10] widely applied in nuclear medicine, among some 

actual technological applications, and also analyze 

technological innovation process like that associated to 

spintronics [11]-[12] and quantum information science 

[13]-[14]. The main objective of the present article is to give a 

conceptual introduction to Dirac's theory using mathematical 

tools at an undergraduate level and emphasizing in the 

physical aspects involved. Even though the material here 

presented may be found in several textbooks and publications 

online accessible by internet, it is difficult and time 

consuming for the students to get an introduction as that given 

in this article. For reaching this goal the article is organized as 

follows. Section II presents a pedagogical link between 

Schrödinger and Dirac equations. In fact, arguments are given 

for incorporating in Schrödinger’s equation a term associated 

with spin so that the non-relativistic Pauli's equation is 

obtained. Then a simplified derivation of Dirac's equation is 

presented for the one dimensional case of a free particle 

moving in only one direction. In section III Dirac's equation is 

analyzed discussing the negative energy solutions and how 

the spin property is included. In particular the non-relativistic 

limit of this equation is studied verifying that it corresponds to 

Pauli's equation, so that a round trip between these equations 

is presented for helping students to integrate their learning of 

Quantum Mechanics and Relativity Theory. Section IV 

contains a brief discussion of the Zitterbewegung effect 

("trembling motion") which Schrödinger predicted when he 

analyzed the time dependence of the expectation value of the 

position of a free particle according to Dirac's theory. In 

section V some numerical examples are presented. One of 

them shows the Zitterbewegung effect due to the interference 

between two wave packets representing a pair 

particle-antiparticle. The second example shows a 

comparison between bound sates energies obtained from 

Dirac and Schrödinger equations, discussing the differences. 

II. GOING FROM SCHRÖDINGER TO DIRAC'S 

EQUATION  

A. Incorporating a term associated to spin in 

Schrödinger’s equation  

 

Introduction of spin in non-relativistic quantum mechanics 

looks as an ad hoc procedure, but here is done in this form as 

an approach for facilitating a better physical understanding of 

Dirac's theory. It must be taken into account that the correct 

meaning of spin requires the use of relativistic quantum field 

theory, what certainly is out of the scope of the present article. 
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Considering this context, this section presents a conceptual 

insight about the connection between Schrödinger and Dirac 

equations. First of all the relativistic expression for the energy 

of a particle without spin moving in an electromagnetic field 

is discussed, determining its non-relativistic limit. Then 

arguments are given for adding a term to Schrödinger’s 

equation for including the interaction between the spin and a 

magnetic field, leading to an interpretation of Pauli's equation 

which can be seen as a link between Schrödinger and Dirac 

equations. In fact this link is illustrated in section III analyzing 

the non- relativistic limit of Dirac's equation. 

The spin is an intrinsic property of particles that could be 

understood as an angular momentum and was postulated in 

1925 by Uhlenbeck and Goudsmit [15]. The name spin for 

this property was given by Pauli and it is generally seen as a 

non- orbital intrinsic angular momentum of a particle like an 

electron which can be associated to a magnetic moment   

according to the relation [16]-[17] 

      

 S
m

q
g



2
                                                   (1) 

 

In the above equation q and m are the electric charge and mass 

of the particle, respectively,  is the spin vector and g is the 

gyromagnetic ratio which for an electron has a value 

approximately equal to 2. Though this factor cannot be 

explained classically, in introductory courses to quantum 

physics an intuitive interpretation is sometimes given using a 

rough model which considers the above particle as an sphere 

with uniform distribution of charge and rotating with respect 

to an axes trough its center. Dividing the sphere in 

infinitesimal disks and integrating their contribution to the 

total magnetic moment, a value of approximately 2.2 is 

obtained. Nevertheless, attempts to consider the electron not 

as a point particle lead to contradictory results such as 

tangential velocity greater than the speed of light [18]. 

Therefore it is not pedagogic to induce such interpretation.  

In presence of a magnetic field B


 the interaction energy 

between the spin magnetic moment and the magnetic field is 

           BS
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First, we consider a spinless relativistic particle subjected to 

an electromagnetic field described by a cuadrivector 
A  with 

time-like and space-like components   and A


, 

respectively. According to [19] section 12.1 the total energy E 

is given by 

           qmcAqPcE 
22
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where P


 is the conjugate momentum defined as in [20] 
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Equations (3) and (4) consider that due to the interaction with 

an electromagnetic field, the dynamics of a particle with 

charge q is described using the time derivative of the 

conjugate momentum P


 instead of the usual mechanical 

momentum 


mp  . The components of the momentum are 

correctly defined as the derivatives of the Lagrangian with 

respect to the components of the velocity. With a magnetic 

field this results in Eq. (4) and use of Hamilton's equations 

with the Hamiltonian corresponding to the energy given by 

(3), leads to the Lorentz force equation  BEqdtpd


 /  

for a particle of charge q moving with velocity 


 in an 

electromagnetic field with electric and magnetic field 

components E


 and B


, respectively. This is not possible if 

one uses the mechanical momentum p


 instead of the 

conjugate momentum P


. 

In the non-relativistic limit 
2mcpcAqPc 
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The first term of this last equation may be interpreted as the 

kinetic energy including the interaction with an external 

electromagnetic field. Since the kinetic energy must include 

the contributions of the translational motion (associated to the 

linear momentum )p


 and in general, of an angular 

momentum PrL


   with respect to some specific point, it 

is necessary to identify these contributions in (5). For that 

purpose let us consider a particle of charge  q moving on a 

weak homogeneous magnetic field with a corresponding 

vector potential given by 

                        rBA



2

1
                                 (6) 

For a weak magnetic field the first term of (5) can be 

approached as 
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where prPrL


   and 22 pP


 . Therefore under this 

approach we recognize PrL


  as the orbital angular 

momentum and (5) becomes 
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Now, the expression for the energy of a particle in an external 

electromagnetic field looks more familiar since the first and 

third term of  (8) represent the kinetic energy associated to the 

momentum p


 and the rest energy of the mass m, 

respectively. The second term represents the interaction 

energy of the angular momentum with the external magnetic 

field and the fourth corresponds to the interaction of the 

charge with the external electric field. 

For including the spin property and its interaction with the 

considered electromagnetic field, the energy given by (2) is 

added to (8) resulting in the following expression for the 

energy measured with respect to the rest energy 
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The above expression may be associated with the 

Hamiltonian of the Pauli's equation [21] 
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In this last equation p̂ , L̂  and Ŝ  are the linear momentum, 

angular momentum and spin operators, respectively. As 

shown in [22] - [24] Pauli's equation is the nonrelativistic 

limit of Dirac's equation and in next subsection a simplified 

derivation of this equation is presented. 

 

B. A simplified derivation of Dirac's equation  

In this section a conceptual derivation of Dirac's equation is 

presented, beginning from the known relation between energy 

and momentum for a free relativistic particle of mass m 

propagating in the z direction with momentum of magnitude p 

     

         22222 mcpcE                                              (11)                                            

Dirac tried to obtain an equation linear with the first time 

derivative of the wave function   and compatible with  (11) 

of the form [22]  

          


H
t

i ˆ



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with Ĥ  being the hamiltonian operator. 

For a free particle the operator Ĥ  is constant, so that the 

temporal evolution of  is given by a factor   tEi /exp  . 

Therefore (12) becomes 

                     HE ˆ                                        (13)                                      

Since the eigenvalues of Ĥ  are the energy values and they 

are real, this operator must satisfy HH ˆˆ 
 where Ĥ  is the 

hermitean conjugate of Ĥ  (the matrix resulting from 

transposing Ĥ  and taking the conjugate complex of its 

elements). Therefore from (13) we have 
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Since (12) is linear in the time derivative, it appears natural to 

construct a hamiltonian operator also linear in the spatial 

derivatives, so that to consider time and space coordinates in a 

form more symmetric as compared with Schrödinger’s 

equation. This is compatible with the relativistic expression 

for the energy given by (11) and allows to get its form 

invariant under Lorentz transformations. Therefore, 

following an approach similar to that used by Dirac the 

hamiltonian  is written in the form 

               
2ˆˆ mcpcH                                    (15) 

 

where p̂   is the momentum operator given in this case by 

zip  /ˆ  , and  ,   are elements such that a 

combination of  (11), (14) and (15) leads to the conclusion 

that they must be matrices of dimension nn  and not 

ordinary numbers. In fact, after a little algebra one obtains that  

  and   must satisfy the following relations 

               I 22   

       0                                                 (16) 

 

where  I is the identity matrix. A dimensional analysis of (13) 

shows that the wave function   must be a column matrix of 

dimension 1n  called spinor. Since the eigenvalues of Ĥ  

are real, the first relation of (16) tells us that the eigenvalues 

of   and   must be real taking only values  1 . The 

dimensions of   and   can be determined as follows: 

The second relation of (16) allows to write    as 
1  . Considering that the trace of a matrix is the sum 

of its diagonal elements (corresponding to its eigenvalues for 

a matrix diagonalized using its eigenvectors) and considering 

that for any two matrices A and B,     BATrABTr  , one 

obtains 

 

         TrTrTr  1                                     (17) 

 

This last equation implies that   0Tr . In a similar form it 

can be obtained that   0Tr . Therefore from this result it 

can be deduced that each of these matrices must have as many 

positive and negative eigenvalues requiring that the 

dimension n  be even. 

For n=2   the only matrices    satisfying the first relation 

of  (16) are the identity matrix and one of the Pauli matrices. 

Since it is considered that the particle is moving along the z 

direction, this last matrix should be 
3

  given by 
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Nevertheless in this case it is not possible to satisfy the second 

relation of (16). Therefore matrices   and   must have 

dimensions 44  and according to the representation 

introduced by Dirac they are given by 
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From this analysis the relativistic Dirac's equation in one 

dimension for a free particle moving in the z direction can be 

written as 
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This equation can be generalized to three dimensions and 

including an electromagnetic field described by the 

cuadrivector 
A , it can be written as follows 
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In this last equation p̂  is the operator  ip̂  and ̂  is a 

three-dimensional vector whose elements are matrices i
  

with i=1,2,3. These numbers are associated to directions x, y 

and z, respectively, so that 
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Matrices  1
 , 2

  and 3
  have dimensions 44  and are 

given in terms of Pauli matrices  by 
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III. ANALYSIS OF DIRAC’S EQUATION AND ITS 

SOLUTIONS 

This section contains an analysis of Dirac's equation, 

starting by the solutions corresponding to a free particle and 

discussing how the negative values obtained for the energy 

can be associated to antiparticles. Next, it is discussed how 

the spin property can be explicitly seen from this equation if 

the particle is subjected to an electromagnetic field. For this 

purpose an analysis of the non-relativistic limit of Dirac's 

equation is presented verifying that this leads to Pauli's 

equation, where as shown by (10) a term related with spin 

becomes explicit.  

A. Solutions of Dirac’s equation and Negative Energies 

The solutions of Dirac's equation for a free particle at rest are 

given by the eigenvalues and eigenvectors of the Hamiltonian 

operator given by  (15) with  0ˆ p . From (15) and (20) it can 

be seen that there are two solutions with positive energy k
E  

equal to 
2mc , where 2,1k ; the other two solutions have 

negative energies denoted as 2k
E   with a value equal to 

2mc . The corresponding eigenvectors of the Hamiltonian 

for 0E  may be expressed as column matrices with 

elements ki,
  with 4,3,2,1i  identifying the 

corresponding row. Similarly, for 0E   the corresponding 

eigenvectors are expressed as  column matrices with elements 

2, 


ki
 . For a free particle moving in the z-direction with 

momentum of magnitude p the eigenvalues of the 

Hamiltonian given by (21) correspond to solutions with 

positive and negative energies    222
mccpE  and the 

solution of  (21) is of the form 
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Eqs. (19-21) lead to the following system of coupled 

equations 
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where A
u  and B

u   are columnn vectors of dimension 12  

resulting from dividing the spinor  pu  into two 

2-component spinors. For the two solutions with 0E  let 

us define 
 j

A
u   where 2,1j  is a superscript for 

labeling the two-component column matrices (called 

bispinors) associated to the orientation of spin, whose 

elements are given by ji ,
 , so that )2( 1  jj  

corresponds to spin oriented in the z   z   direction and 

2,1i  identifies the corresponding rows. 

From  (27) one obtains  
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Therefore, for the solutions with positive energy the spinors 

u(p) are given by  
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In this last equation the function f (p) is defined as 

   2

3
/ˆ mcEpcpf    and N  is a normalization factor. For 

a reference frame where the particle is at rest, from (15) and 

(20) it can be seen that the two resulting spinors u(p)    

correspond to the solutions with positive energy 
2mcE  . 

Similarly, for the solutions with negative energy the spinors 

u(p)  are given by 
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where g (p) is defined as    2

3
/ˆ mcEpcpg   .  

 Let us discuss the solutions given by  (30) corresponding 

to negative energy values and considering the case of an 

electron. First of all it is very important to understand that 

negative energy solutions arise mathematically from Dirac's 

equation as has been discussed in the previous sections of this 

article, requiring a basis of four vectors for specifying the 

possible states of a particle like an electron (two states with 

positive energy and the other two with negative energy, each 

one with two possible orientations of the spin). In a paper of 

1929, H. Weyl studied the relation of Dirac's theory with the 

General Relativity Theory, showing that there must be a 

mathematical link between an electron and a particle with the 

same mass but with opposite charge [25].  A few years later, 

C. Anderson analyzed the results of an experiment of 

photographing cosmic-rays tracks produced in a Wilson 

chamber, concluding that these tracks could be associated to 

particles with positive charge and with a mass of the order of 

magnitude of that corresponding to the electron. He gave to 

this kind of positive electron the name of positron [26]. One 

usually accepted interpretation of a negative energy solution 

is that it describes a particle which propagates backward in 

time or, equivalently, a positive energy antiparticle 

propagating forward in time [27]. Relativistic Quantum 

Mechanics predicts that every particle has a corresponding 

antiparticle with the same mass and spin but, for charged 

particles, with a charge (and other properties described by 

quantum numbers) with opposite sign. The antiparticle of the 

electron is called the positron. According to Dirac it is not 

possible to assert that the negative energy solutions represent 

positrons, as this would make the dynamical relations wrong 

[28]-[29]. For removing the possibility of a transition of a 

positive energy electron into an unphysical state of negative 

energy, Dirac defined a new concept of physical vacuum 

(known as Dirac sea), so that all the states with negative 

energies are completely filled. It should be possible to lift an 
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electron out of the Dirac sea via a high energy gamma 

particle. 

 Then there would be a " hole " in the Dirac sea. If the 

original electron in the sea had momentum p


, energy 

 2222 mcpcE 


 and charge eq  , the hole would 

have momentum p


 , energy  2222 mcpcE 


 and 

charge eq  . The "hole" represents the antiparticle of the 

electron, with mass e
m  and charge e , and is called 

positron. 

 

 It is worthy to note that after redefining the concept of 

vacuum, Dirac made no attempt to find the positron wave 

function. In a relatively recent publication [30], 

Truebanbacher proposes a re-definition of the relativistic 

4-momentum operator which allows to describe the positron 

by negative energy plane waves. 

 

B. Going from Dirac to Pauli’s equation 

In the general expression for Dirac's equation given by (22) a 

term associated to spin is not explicitly shown. For students 

that are taking a first course in Relativistic Quantum 

Mechanics this could imply a difficulty for obtaining a 

suitable initial understanding of this theory. Nevertheless, 

Dirac's equation predicts the spin as an intrinsic property of a 

particle whose existence becomes observable by the coupling 

with an electromagnetic field through the charge of the 

particle [21- 22]. One way for making clearer the spin in 

Dirac's equation is the analysis of its non-relativistic limit as 

presented in this subsection, verifying that this leads to Pauli's 

equation, where a term related with spin is clearly specified as 

shown by  (10). As discussed in previous subsection, Dirac's 

equation has solutions with positive and negative energy. 

Since in this case the particle is subjected to an 

electromagnetic field, the momentum is not constant as occurs 

for a free particle. Therefore, the elements of the spinor  

are functions of the position and of the time, so that the 

solutions of  (22) may be expressed as  

 

               
 
 

 



/exp
,

,
iEt

tr

tr
















                           (31)                  

                     

where  tr ,


  and  tr ,


  are column matrices (called 

bispinors) of dimension 12   associated with positive and 

negative energy solutions of Dirac's equation. Inserting this 

last equation in (22) leads to the following system of 

equations     

                


 2ˆ mcqPc
t

iE 






               (32)                                  

           


 2ˆ mcqPc
t

iE 






            (33)                                                         

 

In (32) and (33) P̂  is the operator defined according to 

relation in Eq.(4) as A
c

q
p


ˆ  . 

In the non-relativistic limit the energy E  is approximately 

equal to 2mc  and the positive energy solutions predominate 

over the negative solutions, so that in this limit the term 
t

i



  

may be neglected and for 
2mcq    the following relation 

is obtained from (33) 

                                      



mc

P

2

ˆ




                               (34)                            

                              

From (32) and (34) and using the identity 

    baibaba


   valid for any two vectors 

a


 and b


, one obtains [23] 
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It must be noted that for obtaining  (35) from the above vector 

identity, it has been considered that in this case Pba ˆ


 

and since P̂  contains the operator p̂ , the vector product 

ba


  does not vanish as would be expected for two equal 

ordinary vectors. With P̂  given by (4) the second term of 

(35) is obtained after some vector algebra, using the identity 

    AAA


   and considering that  

AB


 . 

With the usual definition of the spin operator as 2/




S , 

(35) becomes 
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A similar approach as that used for obtaining (8) from (5) 

allows to rewrite  (36) as 
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The above equation is the Pauli's equation given by (10) for 

the case of electric potential 0 . Therefore this section has 

provided a conceptual way for incorporating spin and 

obtaining Pauli's equation, verifying that it corresponds to the 

non-relativistic limit of Dirac's equation. It is worthy to note 

that the solutions of Pauli and Dirac equations correspond to 

vectors with two and four components, respectively, instead 

of only scalar functions as is the case of Schrödinger’s 

equation. 

 

IV. CONSIDERATIONS ABOVE THE VELOCITY OF 

AN ELECTRON ACCORDING TO DIRAC’S EQUATION 

AND ZITTERBEWEGUNG 

Dirac's equation successfully combines quantum mechanics 

with special relativity, providing the theoretical foundation of 

antiparticles and spin. Nevertheless this equation leads to 

some peculiar effects, such as Klein's paradox [31]-[32] and 

Zitterbewegung [33]-[36]. In this section a brief discussion 

about this last effect is presented and in section V a numerical 

example is shown. As known, in non-relativistic quantum 

mechanics the velocity operator is proportional to the 

momentum operator by means of the mass of the particle.  

However in Dirac's theory the velocity is represented by an 

operator whose components have only eigenvalues c  [37]. 
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Schrödinger examined the time dependence of the position 

operator associated with Dirac's equation for a free particle 

and discovered a highly oscillatory microscopic motion which 

he called Zitterbewegung [38]. He noted that if a 

superposition of positive and negative energies states evolves 

in time according to the single particle Dirac's equation, then 

the time-dependent expectation value of the position operator 

shows oscillatory motion with velocity varying between c  

and c , frequency hmc /2 2
~

-120 s 10 and amplitude 

corresponding to the reduced Compton wavelength of the 

electron (~10-13 m) . These values still are practically 

impossible to direct observation with current technological 

capabilities. According to K. Huang [34] this effect may be 

described as a circular motion about the direction of the 

electron spin with a radius equal to the reduced Compton 

wavelength for the electron and its intrinsic spin may be 

considered as due to the orbital angular momentum of this 

motion. During last years some evidence of the 

Zitterbewegung effect has been obtained by experiments of 

electron channeling in crystals where the transmission 

probability shows a peak at the atomic row direction, result 

that is interpreted as an interaction with the Zitterbewegung 

frequency [35]. According to [39] and [40] manifestations of 

Zitterbewegung in crystalline solids have been observed with 

amplitudes of the order of  um*/  , where 
*m  is the 

effective mass at the band edge, 
*2/ mEu

g
   and g

E  

being the energy gap. However as far as the author of the 

present paper knows, the origin of this effect is not yet clear 

and it is understood as due to the interference between the 

positive and energy solutions of Dirac's equation [41]. In [42] 

S.T. Park  has derived an analytical solutions of Dirac wave 

packets to first order for a small momentum spread. He shows 

that the single-particle wave packet for a free electron does 

not exhibit any oscillatory motion, while for a superposition 

state corresponding for example to and electron and positron 

this motion is manifested. 

V. NUMERICAL RESULTS 

A. Zitterwebegung due to interference of two wave packets 

 

In Figure 1 an illustration of the Zitterwebegung effect is 

shown by means of the expectation value of the position along 

the z axis of a mixed wave function corresponding to a pair 

particle-antiparticle according to (50) of [42] here reproduced 

as  

                     tzAtzAtz ,,,


                       (38) 

 

where 
  and 

  are the wave functions of the particle and 

antiparticle with amplitudes 
A  and 

A  respectively. For 

this case values 2/1


AA   have been chosen. The 

oscillatory component of  tz  is shown for the 

superposition state of two wave packets with a value 

mcp 97.0
0
  for the momentum at the center of each wave 

packet and considering three values of the momentum spread.  

 

 
Fig. 1.  Expectation value of the position along the z axis for a mixed wave 

function corresponding to a pair particle-antiparticle for three values of 

momentum spread: mc
p

35.0 (green curve), mc
p

125.0  (red 

curve), mc
p

001.0  (blue curve). The momentum at the center of each 

wave packet is mcp 97.0
0
 .  

 

It can be seen that as p
  decreases the longer is the duration 

of the oscillatory behavior. This can be explained as follows: 

from the Uncertainty Principle of Heisenberg the lower is the 

momentum spread the higher is the spatial extension of each 

wave packet. Since they travel in opposite directions, the 

duration of the interference effect increases. 

 

B. Transmission of a charged particle through a potential 

well and bound states 

As a second example, the behavior of a charged particle under 

the influence of a rectangular potential well of depth o
V   and 

width a  is studied, comparing results obtained using both the 

solutions of Dirac and Schrödinger equations. A one 

dimensional analysis is made considering the spatial variation 

along the x   axis, so that this potential well is described as 

follows:   0xV  for x < -a/2  and  x > +a/2  ; and 

 
o

VxV   for –a/2 < x < +a/2  with 0
o

V . The solutions 

using Dirac's equation are obtained imposing the requirement 

of continuity of the wave functions at the edges of the 

potential well, while in the nonrelativistic approach the 

requirement of continuity of the first derivative with respect to 

x   must be added. 

The solution of Dirac's equation leads to bound states for 

values of energy such as 
22 mcEVmc

o
  [21]. These 

energies can also be numerically obtained using analytical 

expressions as those indicated in [43]. Similarly, the solution 

of Schrödinger’s equation leads to bound states for 

0 EV
o . In this last case it is possible to identify even 

and odd solutions for the wave functions corresponding to 

bound states [44]. For even solutions    xx     while 

for odd solutions    xx   . 

Figure 2 shows some of the energies corresponding to bound 

sates for a potential well of width  2/10
c

a   for different 

values of  o
V . Values obtained using solutions of Dirac's 

equations are shown with red points. Black and blue points 

correspond to even and odd solutions of Schrödinger’s 

equation, respectively.  
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Fig. 2. Energies of the bound states of a rectangular potential well of width 

mca /10  varying o
V . Values obtained using solutions of Dirac's 

equation are shown with red points. Black and blue points correspond to 

even and odd solutions of Schrödinger equation, respectively. 

 

It can be observed that the non-relativistic approach gives 

bound states with energies more negative than those obtained 

from Dirac's equation, result compatible with the 

corresponding ranges for bound states. 

As a complementary discussion, it is worthy to consider that 

the analysis presented in this subsection can be related with 

Klein paradox, whose physical essence lies in the prediction 

that according to the solutions of Dirac equation fermions can 

pass through large repulsive potentials without exponential 

damping. This is called Klein tunneling. As shown in [45] a 

Dirac particle of mass  and arbitrarily small momentum can 

tunnel without reflection through a potential barrier of height 

o
V  if the potential well of depth o

V  supports a bound 

state of energy 
2mcE  . This is called a supercritical 

potential well. In fact, this reference shows that Klein 

tunneling is a general feature of the Dirac equation: any 

potential well strong enough to support a supercritical state 

when inverted becomes a potential barrier which a fermion of 

arbitrarily low momentum can tunnel through without 

reflection. Since the relativistic Dirac's theory covers particle 

as well as antiparticle scattering, this implies that there are 

two distinct  results considering that the zero momentum limit 

corresponds both to particles with energy 
2mcE   and 

antiparticle states with 
2mcE  . The result that 

antiparticles can have transmission resonances when they 

scatter off potential well is equivalent to particles having 

transmission resonances when scattering off potential 

barriers. 

VI. CONCLUSION 

A pedagogical insight about Dirac's theory has been presented 

using a mathematical formalism at an undergraduate level 

with emphasis on the physical concepts involved and 

including some illustrative examples. A simplified way for 

obtaining Pauli's equation has been presented using a classical 

approach for the concept of spin. Then a conceptual 

derivation of Dirac's equation has been presented discussing 

how its non-relativistic limit leads to Pauli's equation. The 

solutions of Dirac's equation have been studied discussing 

how the concepts of spin, antiparticle and Zitterbewegung 

effect arises. These last two concepts are related since as 

discussed, up to now this last effect is usually interpreted as 

due to an interference between states of positive and negative 

energies, what is still a subject of research. 

A comparison between the behavior of a particle in a potential 

well predicted from Dirac's equation, shows important 

differences in the values of energies for total transmission and 

bound sates, with respect to those obtained from 

Schrödinger’s equation. Therefore conditions for using the 

non-relativistic approach must be carefully considered. 

In addition to the pedagogical objective of this article, it aims 

at motivating future researchers to study in more detail effects 

here presented like Zitterbewegung obtaining the 

corresponding theoretical framework for a suitable 

explanation. Furthermore this author thinks that it is necessary 

an extension of a formalism as that of Dirac to the case of 

photons and bosons in general, obtaining an adequate wave 

function for describing their dynamics.   In the case of photons 

several articles have been published on this topic but still is a 

matter that deserves further research. 
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