

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-2, February 2016

 98 www.erpublication.org

Abstract— We present a distributed collaborative and

intelligent system assisting physicians in diagnosis when

processing medical images. This is a Web-based solution since

the different participants and resources are on various sites.

Communication between these different components is ensured

by mobile agents. Furthermore, in order to share a common

understanding of our application domains and to solve problems

related to the semantic of the queries, we have equipped our

distributed system with ontologies. Our system is collaborative

because the participants (physicians, radiologists,

knowledge-bases designers, program developers for medical

image processing, etc.) can work collaboratively to enhance the

quality of programs and then the quality of the diagnosis results.

It is intelligent since it is a knowledge-based system including,

but not only, a knowledge base, an inference engine said

supervision engine and ontologies. The current work deals with

the osteoporosis detection in bone radiographies. We rely on

program supervision techniques that aim to automatically plan

and control complex software usage. Our main contribution is to

allow physicians, who are not experts in computing, to benefit

from technological advances made by experts in image

processing, and then to efficiently use various osteoporosis

detection programs in a distributed environment.

Index Terms— Program Supervision, Distributed Program

Supervision Systems, Mobile Agents, Knowledge Model,

Ontologies, Medical Imaging, Osteoporosis Detection.

I. INTRODUCTION

 Medicine is considered as one of the large application

fields of the image analysis and its processing. For example,

image analysis is widely needed in the imagery by magnetic

resonance, in the radiology to assist physicians in their

diagnosis, and recently in the telemedicine. This analysis is

considered by specialists in image processing in order to offer

more effective programs and more efficient approaches. We

experiment our work in the osteoporosis detection. The most

challenging task is to characterize bone micro rchitecture by

parameters that can be automatically estimated from

radiographies and that can accurately detect and quantify

alterations of bones. For this, an original approach using

morphological tools to extract characteristic features of

trabecular bone images has been developed [11]. To make

such an approach for medical diagnosis, we determined an

―image protocol‖ adapted to bone types (e.g. femur, wrist,

vertebrae) and patient types (e.g. male or female, adult or

 Naoufel Khayati, University Assistant, University of Sousse - National

School of Engineering of Sousse / COSMOS Laboratory - Univesrity of

Manouba, Tunisia; +216 97 830 674.

Wided Lejouad-Chaari, Assistant Professor, COSMOS Laboratory,

University of Manouba, Tunisia.

child) for various image resolutions [4][6]. Setting such an

image protocol consists in planning a sequence of programs

and tuning their input values (e.g., threshold values, filter size,

etc.). This constitutes a tedious, time consuming task which

requires both clinicians and image processing experts to

collaborate. Our solution was to provide an interactive tool

which relies on artificial intelligence techniques to build

image protocols in different situations. Moreover, we wish to

make this system accessible to bone radiologists, a

geographically scattered community. In previous work, we

validated our technological and architectural choices and the

morphological analysis [5][6]. In this paper, we investigate

further, the use of mobile agents, and our knowledge models

choices in terms of ontologies. Hence, this paper summarizes

all that we have done in order to offer a distributed intelligent

assistant for osteoporosis detection, relying on mobile agent

technology.

II. PROGRAM SUPERVISION

 Several program libraries have been developed by

specialists in various domains with an aim of automating the

image processing. But, the user of these libraries of image

processing and medical imaging does not have competences

in data and image processing allowing him to use them in an

effective way. Moreover, users (physicians) must focus

themselves on the interpretation of the results and not on the

way in which these programs are carried out and scheduled.

Thus, approaches of Artificial Intelligence were proposed in

order to assist a non-specialist in data processing for correct

use of these programs in its field. These approaches are

known as "Program Supervision" [9] which consists of the

automation of management and the use of preexistent

programs. These programs are considered as ―black boxes‖

and their application domain or their programming language

is not relevant. The goal is not to optimize the programs

themselves, but to assist program usage [9].

 To carry out a supervision task, a subset of programs is

chosen, scheduled, and applied to a specific problem. This

selection and this scheduling in various configurations are

ensured by a supervision system, which, thanks to the

reasoning of its engine and the knowledge contained in its

base can free the user (the physician) to make this

management manually. This enables a physician to run

programs, to check the consistency of some image analysis

methods, to compare algorithms, to evaluate results, to

reconsider some parameters and to readjust them. Program

supervision may be applied to different domains related to

image, signal processing, or scientific computing like

Astronomical Imaging (e.g. automatic galaxy classification

[10]), Vehicle Driving Assistance (e.g. road obstacle

detection [7]), and Medical Imaging (e.g. chemotherapy

follow-up based on Factorial Analysis of Medical Image

An Ontology-based Intelligent System for Medical

Diagnosis

Naoufel Khayati, Wided Lajouad-Chaari

An Ontology-based Intelligent System for Medical Diagnosis

 99 www.erpublication.org

Sequences [1][8], and the segmentation of 3D MRI images of

the brain [1][8], osteoporosis detection in bone radiographies

[4][5]).

III. ARCHITECTURE OF THE DISTRIBUTED AND INTELLIGENT

SYSTEM

 In our previous applications we used a centralized

supervision system in which data, programs and the

knowledge-based system (KBS) have the same location.

However, applying program supervision to real applications

as osteoporosis detection, require distributing it. Indeed, both

data (images from different hospitals) and programs

(developed by different teams) come from various places. In

most cases it would be fairly inefficient to move data and

executable code to the same place as the KBS, and in some

case it is even not possible (e.g., programs may execute only

on a specific hardware).

 Therefore, we have developed a distributed version of the

assistant, based on mobile agents, where clinicians from

different countries may safely use the system and work

collaboratively (run programs of other teams, check

consistency of image analysis methods and evaluate results);

where medical imaging experts may manage different

versions of their programs; and where knowledge engineers

may capitalize knowledge and adapt it to program changes.

The distributed system, whose architecture is proposed in

[2][3] and given by figure 1, is a triple (S, A, KM) defined by:

 S, a set of three types of servers

o A session server playing the role of an interface

allowing end-users to access the supervision

services and to communicate with the other

components of the distributed system.

o A set of resource servers hosting programs,

knowledge and supervision engine of the

centralized system: a supervision server hosting

the supervision engine, some program servers,

some knowledge servers and some data servers.

o And possibly a set of execution servers, on which

programs are executed. For example, when

dealing with MatLab programs, their execution

requires at least, the presence of the MatLab

tool on one of the servers.

 A, a set of agents who are responsible for updating the

previous components and for performing requests. This

multi-agent system combines stationary and mobile

agents.

 KM, a set of knowledge models in the form of metadata and

ontologies used to locate resources in order to define the

mobile agents itinerary, to define access permissions and

to analyze the user request so that it is properly treated.

IV. AGENT MODEL

 When distributing the supervision system, mobile agents

are used to implement the communications between its

components. Metadata help localize the various resources

(programs, data, execution servers, etc.).

 The architecture of the multi-agent system [2][3] as

presented on figure 2 consists of several types of servers.

First, one Program Supervision Server runs the supervision

engine named PEGASE; then possibly several Execution

Servers enable to execute the planned programs; Resource

Servers contain remote resources needed by executions (e.g.,

data files, scripts); finally, the end-user interacts directly with

a Session Server.

 The agents are classified according to their roles into three

categories: Interface agents (IA), Processing agents (PA) and

Communication agents (CA).

A. Supervisor Agents (IA)

 They are called also Session Managers; they are stationary

and are coupled with the access web server. Each one

manages the whole user session and the whole process of

solving the supervision query in its charge. This means that

there is one Supervisor agent by query. Such an agent:

 Reads the metadata to identify and localize the involved

resources in the resolution of the query;

 Creates the other stationary agents for interfacing with the

supervision engine (Engine agent) and the different

execution servers (Execution agents);

 Determines the number of needed Solver agents and

creating them. This computation is done according to

some information given by the Supervision Engine: the

Ndep dependency sets and the Npar parallel operators

by set;

Fig. 1. Distributed Assistant Architecture.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-2, February 2016

 100 www.erpublication.org

Fig. 2. Architecture of the Multi-Agent System and Scenario of Use.

 For the last point, in a YAKL code [12] (Yet Another

Knowledge Language, used by PEGASE), we may note

parallel tasks in the Body section of a composite operator. We

may also note dependency links between the sub-operators of

a composite one, in its Flow section. These concepts are

necessary when determining the number of solver agents. The

dependencies will allow building some dependency sets that

will allow finding the right number of solver agents to create.

We define a dependency set as a set of operators having at

least one common parameter.

A. Engine Agents (IA)

 There is an Engine Agent by query; it represents an

"instance" of the supervision engine. The role of such an

agent is to interface with the supervision engine by submitting

to it, a query to process and getting from, a plan of programs

to execute. Furthermore, it communicates the parallel

treatments and the dependency sets to the Supervisor agent.

B. Solver Agents (PA)

 They are mobile and have to launch the execution of the

remote programs already planned by the supervision engine.

For example, while being under the control of the Supervisor

agent, the Solver agent migrates to the supervision server

(path 1 on figure 2) looking for the next instruction (the

program and its call syntax). Then it seeks the necessary

resources for this instruction from the Transporter agents,

migrates to the corresponding execution server (path 2 on

figure 2), and then waits until all the resources are available

(information received from a synchronizer agent). At this

stage, it starts executing the instruction, and finally, it sends

the results to the Supervisor.

 In general, the number of solver agents is determined

according to these rules:

 For a dependency set of N elements, if it contains Npar

parallel elements (Npar ≤ N), then the maximum number

of solver agents will be equal to Npar (one agent per

parallel task, then one of them will continue with the

other tasks of the same set). Otherwise it will be equal to

1.

 For Ndep dependency sets the maximum number of solver

agents will be equal to

. If no set has parallel tasks, such number

shall be equal to Ndep.

C. Evaluator Agents (PA)

 They are created by Solver agents on the program sites or

on the execution sites. They are created only if they are

needed, i.e. if some programs require the evaluation of their

results. An agent of this class stores the result to evaluate in its

context and then must go to another server to perform its task.

For its migration, the destination depends on the assessment

type. Thus, if the evaluation is automatic, i.e. made by the

supervision engine based on the knowledge base rules, it must

migrate to the supervision server (path 4b on figure 2).

 Otherwise, if the assessment is interactive, i.e. it requires

the user intervention; it migrates to the access web server

(path 4a on figure 2). In the case of an interactive assessment,

the user response will be sent to the engine agent so it can

decide the next step (continue with a new program or re-run

the same program with repaired values for its parameters).

D. Transporter Agents (CA)

 They are created by the solver and are responsible for

searching the necessary knowledge for the supervision engine

in order to select the programs and their sequencing. In

addition, they search the necessary resources to execute the

current instruction, and transport them to an execution server

(path 3 on figure 2). Since an instruction may need resources

located on different nodes, there may be, simultaneously,

several active Transporter agents.

E. Synchronizer Agents (CA)

 They are created by the Solver agent to synchronize the

operations of the resources transport performed by the

Transporter agents. Indeed, since many Transporters may be

active simultaneously, they must register with the associated

Synchronizer. When they are all registered, this agent starts

them and waits until they do their jobs. Finally, when all the

needed resources are available, it indicates to the Solver that it

can continue its work.

An Ontology-based Intelligent System for Medical Diagnosis

 101 www.erpublication.org

V. KNOWLEDGE MODEL

A. Knowledg Base Content

For our tests, the program supervision system for osteoporosis

detection, has supervised programs written in MatLab. The

knowledge base (KB) is developed using the dedicated

knowledge representation language, named YAKL [12],

which uses both object-based and rule-oriented descriptions.

This language allows experts to define domain types, objects

or operators, and different rules to be used during reasoning.

For example, it defines the scheduling of the programs and

describes the inputs and outputs of each one with its

arguments and syntax. These descriptions are provided by the

expert in medical image processing and are transparent to

clinicians who have only to provide the digital radiographic

images to be processed. A KB can be presented by a tree

where the root is the principal composite operator, the

intermediate nodes are the other composite operators and the

leaves are the primitive operators. Figure 3 shows a simplified

tree of our KB about the osteoporosis detection programs.

The entry point of this tree is represented by the root operator

OsteoMorph. This composite operator is decomposed into a

sequence of primitive operators (oval forms) and composite

ones (rectangular forms). The tree corresponding to our KB

has six abstraction levels with 31 operators (11 composite

operators and 20 primitive ones). Three of the eleven

composite operators present a choice between operators, the

other eight ones including one iterative operator, present

sequences of operators. Among the primitive operators, there

are:

 Three optional operators, i.e. their planning depends on
the corresponding optionality criteria;

 Seven operators belonging to branches that require a

choice, i.e. their planning depends on some choice

criteria.

 Ten that are planned in all cases.

Fig. 3. The OsteoMorph operator decomposition.

Adding to this, there are about ten decision criteria. For

instance, figure 4 gives an example from the osteoporosis

knowledge base: a composite operator that describes an

alternative decomposition (denoted by a |) into two

suboperators: grey-level or binary skeletonization. A choice

rule has been given by the expert to decide which

sub-operator should be selected depending on the situation (in

this case the choice is left to the end-user).

 The Distribution part displays information about data

transfer between the parent operator and its sub-operators.

In other examples, when a composite operator is decomposed

into a sequence of operators, the Flow part is added and will

contain data transfer between the different sub-operators.

The role of rules is essential to the engine strategy at different

points during the reasoning process: for instance, to choose

between several alternatives (choice rules, as shown above),

to adapt program execution, to assess result quality, and to

repair a badly assessed execution. These decision points are

the key to establishing and adapting the ―image protocols‖.

B. Ontological Architecture

 In order to share a common understanding of our

application domains and to solve problems related to the

semantic of the supervision queries, we have equipped our

distributed supervision system with ontologies. The global

ontological architecture [2] (figure 5) of our distributed

system consists of three interoperable ontologies: an ontology

for the supervision

domain and its knowledge, a second for the elements involved

in its distribution (distribution ontology) and a third for the

application domain (medical imaging and osteoporosis

detection). For their integration into the system, our

ontologies undergo the application of a reasoner which offers,

in case of inconsistency, possible repair operations. Thus, we

obtain semantic files reflecting them (Step 1 on figure 6).

Fig. 4. A composite operator in a YAKL code.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-2, February 2016

 102 www.erpublication.org

Fig. 5. Ontological Architecture.

A. Asking the Ontologies

 The query language defines the syntax and the semantics

required to express queries and the possible forms of the

results. We expressed interrogative SELECT queries type,

which extract a sub-graph corresponding to a set of resources

satisfying the conditions specified in the WHERE clause.

Indeed, the user expresses his query in textual form, for

example, "check the status of the bone".

 This sentence will be split into words; neutral words will be

eliminated (the, of, etc.). Then, the application domain

ontology will be queried. This gives that the word "check

status bone" is subsumed by the "Osteoporosis" concept. For

testing, we added white concepts such as "diabetes",

"Hepatitis", etc. to ensure that the query asked to the ontology

receives the good answer. Then, the supervision ontology has

to fetch the functionality which is responsible for the

osteoporosis detection and subsequently the appropriate

composite operator (Step 2 on figure 6). Once determined,

this functionality will be communicated to the supervision

engine (Step 3 on figure 6) so it can decide the "good"

knowledge files (Step 4 on figure 6) and thereafter, the right

resources needed for the resolution of the current query. At

this stage, agents will be launched (Step 5 on figure 6) to start

a supervision process.

VI. MEDICAL SCENARIO

 This section illustrates a rheumatologist processing an

image through our distributed medical assistant. After

connecting to the supervision server, the rheumatologist

simply enters his query as keywords and uploads an image to

analyze.

A. Preparation Phase

 On receiving a supervision query from a user, our system

will translate it in a query language for the ontological

architecture in order to determine the appropriate

functionality (Step 2 on figure 6). Once determined, this

functionality will be communicated to the supervision engine

(Step 3 on figure 6) so it can decide the "good" knowledge

files (Step 4 on figure 6) and thereafter, the right resources

needed for the resolution of the current query. Let, for

example, the selected knowledge files deal with a

functionality having as a first composite operator,

OsteoMorph. Then, the knowledge-based system launches

this operator and starts a planning phase by decomposing this

operator into its suboperators, as shown in figure 3: Reading,

Skeletonization and Analysis. Reading, (1) in figure 3, is a

primitive operator and does not need evaluation. The second

sub-operator (Skeletonization) is a composite one, the system

has to choose between two alternative sub-operators: BinSkel

or GraySkel (i.e. binary or gray-level skeletonization). Using

expert choice rules given in the knowledge base, the engine

selects one of them, say BinSkel (2). Since the knowledge

base requires an evaluation of result for this operator,

planning must be suspended and execution performed. At this

stage, agents will be launched (Step 5 on figure 6) to start a

supervision process.

B. Supervision Phase

 The execution starts with the Solver agent moving to the

Reading program site and running it. Then the Solver goes to

the BinSkel program site to execute it. Now, the evaluation

phase can be performed. An Evaluator agent is created to

execute evaluation rules. In case of automatic evaluation, it

moves to the engine site to execute them. In case of user

evaluation, it moves to the server site in order to ask the

questions provided by these rules to the user. Then the

Evaluator sends the assessment back to the engine. If the

assessment is good, the planning phase continues with the

Analysis composite operator. Otherwise, repair or adjustment

rules are used to decide to modify the plan or to re-execute the

same programs with different parameter values, resulting in a

new plan. For instance, BinSkel assessment is manual.

 The user is asked about the presence of undesirable

segments. If this is the case an adjustment rule is fired, that

increases the value of a pruning parameter, so that BinSkel

may be executed again.

 The same process runs up to the last program in the

decomposition (5). The Solver agent executes this last

operator and moves back to the server with the final result

together with the plan established by the engine, for example,

the following sequence of programs: Reading, BinSkel,

DimProj, Direction and AttributesDir.

An Ontology-based Intelligent System for Medical Diagnosis

 103 www.erpublication.org

Fig. 6. Ontologies integration and preparation phase.

The system may also have other uses depending on the

end-user type. For instance, image processing experts can use

the supervision server to check their programs, observe their

results, and compare them with other approaches. A

collaborative construction of knowledge bases on the use of

medical image processing programs is also possible.

VII. CONCLUSION

 Considering the early osteoporosis detection as a challenge

for the medical community, we described in this paper, a

distributed intelligent and interactive system relying on

knowledge based techniques: (1) to assist physicians and

image experts in validating ―image protocols‖; (2) to facilitate

access to up to date image programs by rheumatologists who

do not want to bother about medical image analysis details;

(3) to allow physicians to submit an image, to obtain resulting

medical parameters and also the corresponding execution

plan (that is the effective ―image protocol‖). Therefore, the

radiologists who are not specialists in image processing must

be freed from the program details in order to focus on the

interpretation of the results and their evaluation.

 Distributing such systems is fundamental because

physicians, image processing programs, images, inference

engine, knowledge bases, etc. are generally located at

different sites. Our distributed environment is based on a Web

server, mobile agents for the communication

inter-components and Semantic Web ontologies to facilitate

physician access and knowledge exploration. Hence, the

strength of the proposed system comes from the following

points:

 Taking advantages from the technological advances in

medical image processing.

 Facilitating the experiments by radiologist and physicians

and allowing them to adjust and repair the values of the

programs parameters.

 Making different experts work together.

 Consolidating the diagnosis of the disease.

 Taking into account the heterogeneity of data (images,
knowledge, ontologies, programs, etc.).

 Our tests dealt with small bone images (from 64 * 64 to 512

* 512). As prospects, we plan to improve the performance of

our distributed and collaborative intelligent system when

scaling with multiple queries and greater images, and this, in

order to test its ability to maintain its functionalities and

performance in an important demand.

REFERENCES

[1] M. Crubézy, F. Aubry, S. Moisan, V. Chameroy, M. Thonnat and R. Di
Paola, ―Managing complex processing of medical image sequences by
program supervision techniques‖, In Proc. of SPIE Medical Imaging
1997, vol. 3035-85, pp. 614-625, Newport Beach, CA, February 1997.

[2] N. Khayati and W. Lejouad-Chaari, ―A Distributed and Collaborative
Intelligent System for Medical Diagnosis‖, Advances in Distributed
Computing and Artificial Intelligence Journal (ISSN: 2255-2863),

Volume 5, July 2013.

[3] N. Khayati and W. Lejouad-Chaari, ―Agent and khnowledge models
for a distributed imaging system‖, In proc. of the International
Symposium on Distributed Computing and Artificial Intelligence,
DCAI’2013 Salamanca, Spain. Advances in Intelligent and Soft
Computing, Volume 217, May 2013, pp 235-242.

[4] N. Khayati, W. Lejouad-Chaari, S. Sevestre-Ghalila, ―A Distributed
Interactive Medical Diagnosis Support System‖, In Proceedings of the
2nd International Conference on Advanced Information and
Telemedecine Technologies for Health (AITTH’2008), pp 59-63,
Minsk, Belarus, October 2008.

[5] N. Khayati, W. Lejouad-Chaari, S. Sevestre-Ghalila, ―A Distributed
Image Processing Support System: Application to Medical Imaging‖,
In Proceedings of the IEEE International Workshop on Imaging
Systems and Techniques (IEEE-IST’2008), pp 261-264, Chania,
Greece, September 2008.

[6] W. Lejouad-Chaari, S. Moisan, S. Sevestre-Ghalila, J.P. Rigaut,
―Distributed Intelligent Medical Assistant for Osteoporosis Detection‖,
In Proc. of the International Conference of IEEE Engineering in
Medicine and Biology Society, Lyon – France, August 2007.

[7] C. Shekhar, S. Moisan and M. Thonnat, ―Real-Time Perception
Program supervision for Vehicle Driving Assistance‖, In Okyay
Kaynak, Mehmed Ozkan, Nurdan Bekiroglu, and Ilker Tunay, editors,
ICRAM’95 Intl. Conference on Recent Advances in Mechatronics, pp.
173–179, Istanbul.

[8] M. Thonnat, S. Moisan and M. Crubézy, ―Experience in Integrating
Image Processing Programs‖, Int. Conf. Vision Systems (ICVS’99).
Las Palmas, Spain. January 1999. LNCS 1542, pp 200-215.

[9] M. Thonnat and S. Moisan, ―What can Program Supervision do for
Software Reuse?,‖ IEEE Proc. Special Issue on Knowledge Modelling
for Software Components Reuse, Vol. 5, No. 147, pp.179- 185, Oct.
2000.

[10] R. Vincent, M. Thonnat and J.C. Ossola, ―Program supervision for
automatic galaxy classification‖, In Proc. of the Intl. Conference on
Imaging Science, Systems, and Technology, CISST'97, June 1997.

[11] S. Sevestre-Ghalila, A. Benazza, A. Ricordeau, N. Mellouli, C.
Chappard et C.L. Benhamou, ―Texture image analysis for osteoporosis
detection with morphological tools‖. In P. Hellier C.Barillot, DR
Haynor, editor, MICCAI 2004, volume 1, pages 87-94. LNCS Springer
Verlag, September 2004.

[12] Moisan S, ―Knowledge Representation for Program Reuse‖, ECAI’02,
Lyon. France, Jul. 2002.

