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 

Abstract— In this paper, we investigated the peristaltic 

transport of a hyperbolic tangent fluid through a porous 

medium in a vertical channel under the assumption of long 

wavelength. The expression for the velocity and axial pressure 

gradient are obtained by employing perturbation technique. The 

effects of various pertinent parameters on the time-averaged 

flow rate are discussed with the help of graphs. 

 

Index Terms— Darcy number, Hyperbolic tangent fluid, 

peristalsis. Vertical Channel. 

 

I. INTRODUCTION 

A Peristaltic pump is a device for pumping fluids, generally 

from a region of lower to higher pressure, by means of a 

contraction wave traveling along a tube–like structure. This 

traveling wave phenomenon is referred to as „Peristalsis‟. 

Peristalsis originated naturally as a means of pumping 

physiological fluids from one place in the body to another, 

and is the primary pumping physiological fluids from one 

place in the body to another, and is the primary pumping 

mechanism in swallowing (and indeed all the way through the 

alimentary canal) in the ureter, the bile duets, the ductus 

efferentes of the male reproductive tract, and even in some 

small blood vessels. Humankind has borrowed the idea and 

used it in applications where the material being pumped must 

not be contaminated (eg blood) or is corrosive and should not 

be in contact with the moving parts of ordinary pumping 

machinery. Analytical solutions were obtained for peristaltic 

flows by   assuming either small amplitude but arbitrary 

Reynolds number [1] –[2] or arbitrary amplitude with small 

curvature and negligible inertia [3].  

It is well known that some fluids which are encountered in 

chemical applications do not adhere to the classical 

Newtonian viscosity prescription and are accordingly known 

as non-Newtonian fluids. One especial class of fluids which 

are of considerable practical importance is that in which the 

viscosity depends on the shear stress or on the flow rate. The 

viscosity of most non-Newtonian fluids, such as polymers, is 

usually a nonlinear decreasing function of the generalized 

shear rate. This is known as shear-thinning behavior. Such 

fluid is a hyperbolic tangent fluid [4]. Reference [5] have first 

investigated the peristaltic flow of a hyperbolic tangent fluid 

in an asymmetric channel. Reference [6] have analyzed the 

peristaltic transport of a Tangent hyperbolic fluid in an 

endoscope numerically. Reference [7] have discussed the 
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peristaltic flow of a hyperbolic tangent fluid in an inclined 

asymmetric channel with slip and heat transfer.  

Flows through a porous medium occur in filtration of fluids. 

Hall effects on peristaltic flow of a Maxwell fluid in a porous 

medium were investigated by [8]. Reference [9] have 

discussed the effect of magnetic field on the peristaltic motion 

of a Carreau fluid through a porous medium with heat 

transfer. Peristaltic motion of a couple stress fluid through a 

porous medium in a channel with slip condition was studied 

by [10]. Reference [11] have studied the peristaltic MHD 

flow of a Bingham fluid through a porous medium in a 

channel. Peristaltic flow of a non-Newtonian fluid through a 

porous medium in a tube with variable viscosity using 

Adomian decomposition method was investigated by [12]. 

 In view of these, we studied the peristaltic flow of a 

hyperbolic tangent fluid through a porous medium in an 

inclined channel under the assumption of long wavelength. 

The expression for the velocity and axial pressure gradient are 

obtained by employing perturbation technique. The effects of 

various pertinent parameters on the time-averaged flow rate 

are discussed with the help of graphs. 

II. FORMULATION OF THE PROBLEM  

We consider the peristaltic motion of a hyperbolic tangent 

fluid through a porous medium in a two-dimensional 

symmetric vertical channel of width 2a .  The flow is 

generated by sinusoidal wave trains propagating with constant 

speed c  along the channel walls. Fig. 1 illustrates the 

schematic diagram of the channel.  

 

The wall deformation is given by  

2
( , ) cos ( )Y H X t a b X ct




      ,     (2.1) 

 

where b is the amplitude of the wave,   - the wave length and 

X and Y - the rectangular co-ordinates with X measured 

along the axis of the channel and Y perpendicular to X . Let 

( , )U V  be the velocity components in fixed frame of 

reference ( , )X Y . 

The flow is unsteady in the laboratory frame ( , )X Y . 

However, in a co-ordinate system moving with the 

propagation velocity c  (wave frame (x, y)), the boundary 

shape is stationary. The transformation from fixed frame to 

wave frame is given by 

 

 , , ,x X ct y Y u U c v V             (2.2) 

 

where ( , )u v  and ( , )U V  are velocity components in the wave 

and laboratory frames respectively.  
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Fig. 1 The physical model 

   

The constitutive equation for a Hyperbolic Tangent 

fluid is 

    0 tanh
n

      
     
 

      (2.3) 

where   is the extra stress tensor,   is the infinite shear 

rate viscosity, o  is the zero shear rate viscosity,   is the 

time constant, n  is the power-law index and   is defined as   

 
1 1

2 2
ij ji

i j

             (2.4) 

where   is the second invariant stress tensor. We consider in 

the constitutive equation (2.3) the case for which 0   and 

1  , so the Eq. (2.3) can be written as 

      0 0 01 1 1 1
n n

n                      

                    (2.5) 

 The above model reduces to Newtonian for 0   and 

0n  . 

 The equations governing the flow in the wave frame of 

reference are  

 0
u v

x y

 
 

 
               (2.6) 

 0yxxxu u p
u v u c g

x y x x y k

 
 

   
        

     
   

                     (2.7) 

0xy yyv u p
u v v

x y y x y k

  


    
      

     
    (2.8) 

where  is the density and  k  is the permeability of the 

porous medium.   

 The corresponding dimensional boundary conditions are 

u c   at y H        (2.9) 

0
u

y





 at 0y          (2.10) 

Introducing the non-dimensional variables defined 

by  

, , , , ,  
x y u v a

x y u v
a c c


  

    

 2

0

, , , ,
pa b H ct

p h t
a ac


 

     

0 0 0

, , ,xx yyxx xy xy yy

a

c c c

 
     

  
    

2

0

Re ,  , , ,
ac c a q c

We q Fr
a c ac ag

 





       (2.11) 

into the Equations (2.6) - (2.8), reduce to (after dropping the 

bars) 

0
u v

x y

 
 

 
          (2.12) 

 2 1 Re
Re 1

xyxxu u p
u v u

x y x x y Da Fr


 

   
        

     

                    (2.13) 
2

3 2Re
xy yyv v p

u v v
x y y y y Da

  
  

    
      

     
   

                    (2.14) 

here   

 2 1 1xx

u
n We

x
 


      

, 

  21 1xy

u v
n We

y x
  

  
           

,  

 2 1 1yy

v
n We

y
  


      

,  

1
2 22 2

2 2 22 2 ,
u u v v

x y x y
   

        
        

         

 Re   is the 

Reynolds number, Fr   is the Froude number and 
2

k
Da

a
  is 

the Darcy number.  

Under long wavelength approximation  0   , the Eqs. 

(2.13) and (2.14) become 

 
1

1 1 1
p u u Re

n We u
x y y y Da Fr

       
        

       

 (2.15) 

0
p

y





                (2.16) 

From Eq. (2.15) and (2.16), we get  

    
22

2

1
1 1

dp u u Re
n nWe u

dx y y Da Fry

    
       

     

    

                     (2.17)  

The corresponding non-dimensional slip boundary 

conditions in the wave frame are given by  

1u       at  1 cos2y h x         (2.18) 

 0
u

y





   at 0y           (2.19) 
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The volume flow rate q  in a wave frame of 

reference is given by 

 
0

h

q udy  .                (2.20) 

 The instantaneous flow ( , )Q X t  in the laboratory frame is 

  
0 0

( , ) ( 1)

h h

Q X t UdY u dy q h           (2.21) 

 The time averaged volume flow rate Q  over one period 

T
c

 
 
 

 of the peristaltic wave is given by 

  
0

1
1

T

Q Qdt q
T

                (2.22) 

III. SOLUTION 

Since Eq. (2.17) is a non-linear differential equation, so it is 

not possible to obtain closed form solution. Therefore we 

employ regular perturbation to find the solution. 

For perturbation solution, we expand ,
dp

u
dx

 and q as 

follows  

 2

0 1u u Weu O We                    (3.1) 

 20 1
dp dpdp

We O We
dx dx dx

                   (3.2) 

 2

0 1q q We q O We                    (3.3) 

Substituting these equations into the Eqs. (2.17) - (2.19), 

we obtain 

3.1. System of order 0We  

    
2

0 0

02

1
1 1

dp u Re
n u

dx Da Fry


    


      (3.4)  

and the respective boundary conditions are 

 
0 1u     at  y h               (3.5) 

 0 0
u

y





 at 0y          (3.6) 

3.2. System of order 1We
 

  
22

1 1
12

1
1 oudp u

n u
dx y y y Da

   
     

     

     

  (3.7) 

and the respective boundary conditions are 

 
1 0u      at   y h             (3.8) 

 1 0
u

y





  at  0y        (3.9) 

3.3 Solution for system of order 
0We  

Solving Eq. (3.4) using the boundary conditions (3.5) and 

(3.6), we obtain   

 
0

0 2

1 cosh
1 1

cosh1

dp Re y
u

dx Fr hn





   
         

    (3.10)  

where  1/ 1Da n    . 

The volume flow rate 
0q  is given by 

 
0

0 3

1 sinh cosh

cosh1

dp Re h h h
q h

dx Fr hn

  



   
        

   

 (3.11) 

From Eq. (3.11), we have 

 
   

 

3

00
1 cosh

sinh cosh

q h n hdp Re

dx h h h Fr

 

  

 
 


     (3.12)  

3.4 Solution for system of order 1We  

Substituting Eq. (3.10) in the Eq. (3.7) and solving the Eq. 

(3.7), using the boundary conditions (3.8) and (3.9), we obtain 

 

 

 

 

1

2

2

1 0

3

1 cosh
1

cosh1

sinh 2 2sinh cosh

3 2sinh sinh 2 cosh1 cosh

dp y

dx hn

u dp Re

h h yn dx Fr

y y hn h





  

   

  
     

         
   
        

  

                     (3.13) 

The volume flow rate 
1q  is given by  

 

 

1

3

21

0

3 34

1 sinh cosh

cosh1

Re 1

cosh6 1

dp h h h

dx hn
q

dpAn

dx Fr hn

  





  
     

  
       

   (3.14) 

where  

4 cosh 2sinh 2 sinh cosh cosh 2A h h h h h        . 

From Eq. (3.14) and (3.12), we have    

 

 

   

3

1

1 2

0

2 2

1 cosh

sinh cosh

cosh sinh cosh6 1

q n h

h h h
dp

dp Re
dx

An dx Fr

h h h hn

 

  

   

 
 

 
       
 
  

    

(3.15) 

 

Substituting Equations (3.12) and (3.15) into the Eq. (3.2) 

and using the relation 0 1
dp dpdp

We
dx dx dx

   and neglecting 

terms greater than  O We , we get 

   

 

 

 

3

25

3

1 cosh

sinh cosh

Re

6 sinh cosh

q h n h

h h hdp

dx q hWeAn

Frh h h

 

  



  

  
 

 
  

  
  

   (3.16) 

The dimensionless pressure rise per one wavelength in the 

wave frame is defined as 

 
1

0

dp
p dx

dx
             (3.17) 

 Note that, as Da , 0,Re 0We    and 0n  our 

results coincide with the results of Shapiro et al. (1969).  

IV. DISCUSSION OF THE RESULTS 

Fig. 2 illustrates the variation of pressure rise p  

with time-averaged volume flow rate Q  for different values 

of We  with 0.5  , 0.5n  , Re 1 , 0.2Fr   and 

0.01Da  . It is found that, the time- averaged volume flow 
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rate Q  increases with increasing We  in all the three regions 

(namely,  pumping  0p  , free-pumping  0p   and 

co-pumping  0p   regions).      

 The variation of pressure rise p  with 

time-averaged volume flow rate Q  for           different values 

of n  with 0.5  , 0.05We  , Re 1 , 0.2Fr   and 

0.01Da   is shown in Fig. 3. It is observed that, the 

time-averaged volume flow rate Q  decreases with an 

increase in n  in both the pumping and free pumping regions, 

while it increases with increasing n  in co-pumping region for 

chosen  0p  .   

Fig. 4 depicts the variation of pressure rise p  with 

time-averaged volume flow rate Q  for different values of 

Da  with 0.5  , 0.5n  , Re 1 , 0.2Fr   and 

0.05We  . It is noted that, the time-averaged volume flow 

rate Q  decreases with increasing Da  in the pumping region, 

while it increases with increasing Da  in both the 

free-pumping and co-pumping regions.  

The variation of pressure rise p  with 

time-averaged volume flow rate Q  for           different values 

of   with 0.05We  , 0.5n  , Re 1 , 0.2Fr   and 

0.01Da   is depicted in Fig. 5. It is found that, the 

time-averaged volume flow rate Q   increases with an 

increase in   in both the pumping and free-pumping regions, 

while it decreases with increasing   in the co-pumping 

region for chosen  0p  .  

Fig. 6 illstrates the variation of pressure rise p  

with time-averaged volume flow rate Q  for different values 

of Re  with 0.5  , 0.5n  , 0.05We  , 0.2Fr   and 

0.01Da  . It is observed that, the time-averaged volume 

flow rate Q   increases with increasing Reynolds number Re  

in all the three regions.  

The variation of pressure rise p  with 

time-averaged volume flow rate Q  for  different values of 

Fr  with 0.5  , 0.5n  , Re 1 , 0.05We   and 

0.01Da   is shown in Fig. 7. It is found that, the 

time-averaged volume flow rate Q   decreases with increasing 

Froud number Fr  in all the three regions.

  

V. CONCLUSIONS 

In this paper, we studied the peristaltic flow of a hyperbolic 

tangent fluid through a porous medium in a vertical channel 

under the assumption of long wavelength. The expression for 

the velocity and axial pressure gradient are obtained by using 

perturbation technique. It is found that in the pumping region 

the time-averaged flow rate Q  increases with increasing We , 

  and Re ,  while it decreases with increasing n , Da  and 

Fr . Further, it is observed that the pumping is more for 

hyperbolic tangent fluid than that of Newtonian fluid.  

 

 

Fig. 2 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for  different values of We  with 

0.5  , 0.5n  , Re 1 , 0.2Fr   and 0.01Da  .    

 

 

Fig. 3 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for  different values of n  with 0.5  ,  

0.05We  , Re 1 , 0.2Fr    and 0.01Da  .    

 

 

Fig. 4 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for different values of Da  with 

0.5  , 0.5n  , Re 1 , 0.2Fr   and 0.05We  .     
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Fig. 5 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for  different values of   with 

0.05We  , 0.5n  , Re 1 , 0.2Fr   and 0.01Da  .     

 

Fig. 6 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for  different values of Re  with 

0.5  , 0.5n  , 0.05We  , 0.2Fr   and 0.01Da  .   

 
Fig. 7 The variation of pressure rise p  with time-averaged 

volume flow rate Q  for different values of Fr  with 0.5  , 

0.5n  , Re 1 , 0.05We   and 0.01Da  .    
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