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 

Abstract— This paper proposes an improved particle swarm 

optimization (PSO) algorithm based flux optimization strategy 

in energy efficient control of induction machine (IM) drive 

systems. The improved PSO algorithm is based on a 

time-varying inertia weight. The inertia weight is started with a 

large value and linearly decreased that leads to a better 

performance. When the inertia weight is small, the PSO 

algorithm behaves like a local search algorithm. Conversely, 

when the inertia weight is large, the PSO algorithm behaves like 

a global search algorithm. On the other hand, a larger inertia 

weight facilitates a global exploration and a smaller inertia 

weight tends to facilitate a local exploration. This results in the 

best convergence capability and search performance for the 

PSO algorithm in searching for an optimal rotor flux reference 

for energy efficient control of the IM drive system. Simulation 

results confirm the effectiveness of the proposed flux 

optimization strategy in energy efficient control of the IM drive 

system. 

 

Index Terms—Flux optimization, induction machine drive 

systems, particle swarm optimization algorithm.  

 

I. INTRODUCTION 

Regarding energy saving and environmental pollution 

reduction, the optimization in control and operation of 

induction machine (IM) drive systems has received 

significant attention in recent years. Basically, the IM 

operational efficiency is high for rated conditions of the load, 

speed and flux. Nevertheless, the IM drive systems usually 

operate at light loads most of the time. In this case, if the rated 

flux is still maintained at light loads, the core loss will 

increase dramatically. This results in poor IM efficiency. In 

order to solve this problem, it is well-known that the IM 

efficiency can be improved by reducing the flux level when it 

operates at light load conditions [1]. Various approaches have 

been researched to enhance the IM efficiency at light loads. 

The model-based control approach uses an IM loss model to 

define an optimal flux for each operational point at a given 

load torque and machine speed. A neural network [2]-[7], a 

genetic algorithm [8]-[9] and a particle swarm optimization 

algorithm [10] have allowed an optimal flux level to be 

defined for energy efficient control using the IM loss model. 

In the model-based control approach, the IM loss model is 

usually formed by the IM loss components such as the stator 

and rotor copper losses, core loss, stray loss and mechanical 

losses [4]-[6] and [9]-[10]. 

This paper proposes an improved particle swarm 

optimization (PSO) algorithm based flux optimization 
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strategy in energy efficient control of the IM drive system in a 

certain load and machine speed. Furthermore, this paper also 

presents another loss model for the flux optimization strategy 

which is not formed by the IM loss components, such as the 

stator and rotor copper losses, core loss, stray loss and 

mechanical losses. Simulations and comparisons are 

performed to confirm the effectiveness of the proposed 

strategy for remaining an optimal efficiency. 

The remainder of this paper is organized as follows. The 

IM model for flux optimization strategy is presented in 

Section II. The new application of the improved PSO 

algorithm for flux optimization strategy in efficient energy 

control of induction machine drive systems is proposed in 

Section III. The simulation results then follow to confirm the 

validity of the proposed technique in Section IV. Finally, the 

advantages of the new technique are summarized through 

comparison with the PSO algorithm. 

II. INDUCTION MACHINE MODEL 

In the model-based control approach, most of the previous 

energy efficient control strategies were based on the model of 

the IM loss components which are the stator and rotor copper 

losses, core loss, stray loss and mechanical losses. This paper 

introduces a loss model for the flux optimization of the IM 

which is more general and simpler than others. This loss 

model is described as follows.  

In this case, this paper is considered in the steady-state and 

d-axis rotor indirect field-oriented control conditions. Thus 

the IM mathematical model is described as follows. 
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From (3) and (5), the IM synchronous speed is given by: 
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Substituting (3)-(4) and (6) into (1)-(2), the d-q axis stator 

voltages become: 
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From (3)-(4), (6), (7)-(8), assuming that the stator and rotor 

inductances are the same, the input power of the IM is then 

given as follows: 
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In addition, the output power of the IM is described as 

follows: 
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Eventually, from (9)-(10), the total IM loss is: 
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It can be realized that the IM efficiency can be improved by 

minimizing the total IM loss which is dominated by the stator 

and rotor copper losses and core loss. The stator and rotor 

copper losses are reduced by decreasing the stator and rotor 

currents respectively which results in increased IM flux. As a 

consequence, the core loss is then increased. Obviously, there 

is a conflict between the copper losses and core loss. When 

the copper losses are decreased, the core loss is increased 

[11]. Nevertheless, there is an optimal IM flux at which the 

total IM loss is minimized for a given load torque and 

machine speed. This paper proposes an improved PSO 

algorithm to determine the optimal IM flux reference during 

operation presented in next section. 

III. IMPROVED PSO ALGORITHM BASED FLUX 

OPTIMIZATION 

The particle swarm optimization (PSO) algorithm is a 

population-based stochastic optimization method which was 

developed by Eberhart and Kennedy in 1995 [12]. The 

algorithm starts by initializing a population of random 

solutions called particles and searches for optima by updating 

generations through the velocity and position update 

equations.  

The velocity update equation is given by: 
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The position update equation is given by: 

     11  kkk iii vxx  (13) 

In the velocity update equation,  kiv  is the k
th

 current 

velocity of the i
th

 particle whereas  kix  is the k
th

 current 

position of the i
th

 particle; vi is usually clamped in the range 

[-vmax, vmax] to reduce the likelihood that a particle might leave 

the search space. In case of this, if the search space is defined 

by the bounds [-xmax, xmax] then the vmax value will be typically 

set so that maxmax mxv  , where 0.11.0  m  [13]. 

pbesti(k) is the best position found by the i
th

 particle (personal 

best) whereas gbest(k) is the best position found by a swarm 

(global best, best of the personal bests). 

c1 and c2 are acceleration coefficients of the cognitive and 

social components respectively; c2 regulates the step size in 

the direction of a global best particle and c1 regulates the step 

size in the direction of a personal best position of that particle, 

c1 and c2  [0, 2].  

r1 and r2 are two independent random sequences which are 

used to influence the stochastic nature of the algorithm, r1  

U(0, 1) and r2  U(0, 1). 

Obviously, the PSO algorithm is simpler and easier to 

implement than other evolutionary algorithms, as it only has a 

few parameters to adjust, especially in solving discontinuous, 

multimodal and non-convex problems. However, in local 

optima problems, the particles sometimes become trapped in 

undesired states during the evolution process which leads to 

the loss of the exploration abilities. Because of this 

disadvantage, premature convergence can happen in the PSO 

algorithm which affects the performance of the evolution 

process. This is one of the major drawbacks of the PSO 

algorithm which needs to be improved for the evolution 

process performance of the PSO algorithm. It can be realized 

that the inertia weight in the PSO algorithm is considered as a 

trade-off factor for the local and global search abilities of the 

algorithm. In order to understand and control its behavior, Shi 

and Eberhart investigated the effect of w values in the range 

[0, 1.4] as well as in a linear time-varying domain [14]-[15]. 

Their results indicated that choosing w as a constant in the 

range [0.9, 1.2] results in a faster convergence.   Additionally, 

the inertia weight can also be linearly decreased instead of a 

fixed constant value. In [15], the inertia weight is started with 

a large value of 0.9 and linearly decreased to 0.4 that leads to 

a better performance in most of the experiments conducted. 

When the inertia weight is small, the PSO algorithm behaves 

like a local search algorithm. Conversely, when the inertia 

weight is large, the PSO algorithm behaves like a global 

search algorithm. This also means that a larger inertia weight 

facilitates a global exploration and a smaller inertia weight 

tends to facilitate a local exploration [16]. Thus the modified 

inertia weight should be described as follows: 

  initialinitialfinalk w
n

k
www   (14) 

where 

wk is the modified inertia weight;  

wfinal and winitial are the final and initial values respectively of 

the inertia weight.  

It is obvious that the modified inertia weight is a 

time-varying value.  

The PSO algorithm with a time-varying inertia weight is 

applied to the flux optimization strategy in energy efficient 

control. In this application, the particles represent the rotor 

flux reference of the IM. Each particle has its position, { dri } 

and velocity, {
driv }. 

The i
th

 particle position and velocity are limited as follows: 

dri(max)dridri(min)    (15) 

and 

(max)(min) dridridri
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The best position of the i
th

 particle {  k
dri

pbest } and the 

best position over the swarm {  k
dr

gbest } are obtained at 

each k
th

 iteration using the fitness function (11).  

  Eventually, the improved PSO algorithm stops at the n
th

 

maximum iteration number and the optimal rotor flux 

reference is obtained as follows. 

 ngbest
droptimaldr  _  (17) 

The simulations are implemented in the next section to 

validate the proposed PSO algorithm for flux optimization 

strategy in energy efficient control of the IM drive system. 

IV. SIMULATION RESULTS 

Simulations are performed using MATLAB/SIMULINK 

software for the flux optimization strategy in energy efficient 

control of the 3 Hp IM drive system, fed by a voltage source 

inverter. The specifications and parameters of the simulated 

IM are in Table I.  

The improved PSO algorithm is applied for the flux 

optimization strategy in energy efficient control of the IM 

drive system in which the particle number of a generation is 

set to 50 and the maximum iteration number is set to 100. The 

cognitive and social coefficients, c1 and c2 are set to 2 

respectively. The two independent sequences, r1 and r2 are set 

to random values in U(0, 1). The inertia weight, w is started 

with a large value of 0.9 and linearly decreased to 0.4. The 

flow chart for flux optimization strategy of the IM drive 

system is described as in Fig. 1.  

 

Fig. 2 shows the IM efficiency corresponding to the rated 

rotor flux reference which is constant regardless of the IM 

load variation. When the IM load is 80% of the rated load in 

the period, t = 0.5–2 s, the IM efficiency is high, 73.1%. At  t 

= 2 s, the IM load starts decreasing to 60%, 50%, 40% and 

20% of the rated load and the IM efficiency then decreases  to 

68.8%, 66.2%, 62.2% and 45.1% respectively. When the IM 

load decreases, the output power decreases and the input 

power is constant. As a consequence, the IM efficiency 

decreases. 

 

In order to keep high IM efficiency, the input power is 

required to decrease and this can be achieved by changing the 

rotor flux reference to its optimal value.   

Fig. 3 shows that the IM always has high efficiency. The 

rotor flux reference alters to adapt to the IM load variations. 

There is a significant improvement in the IM efficiency, Fig. 

3, which is compared to the IM efficiency using the rated rotor 

flux reference, Fig. 2, especially at light loads. The IM 

efficiency is 45.1% at the lightest load whereas it is 83.5% 

using the optimal rotor flux reference obtained by the 

improved PSO algorithm. 

Figs. 4-5 are the best fitness of the PSO and improved PSO 

algorithms versus the iteration step number and show the 

convergence capability of each algorithm. It can be observed 

that there is a basic difference between the PSO and improved 

PSO algorithms in the inertia weight. This results in a 

significant improvement in the convergence value of the 

improved PSO algorithm as shown in Figs. 4-5.  

The convergence value of the PSO algorithm is 0.24417 

whereas that of the improved PSO algorithm is 1.12710
-7

. 

The modification in the improved PSO algorithm has 

improved the performance as well as avoiding premature 

convergence in the PSO algorithm as illustrated in Figs. 4-5. 

These analyses show that the improved PSO algorithm is 

better than the PSO algorithm in term of the convergence 

value for the flux optimization in energy efficient control of 

the IM drive system. This confirms the validity and 

effectiveness of the improved PSO algorithm in this novel 

application. 

V. CONCLUSION 

This paper proposes a novel flux optimization strategy in 

energy efficient control of the IM drive system obtained by 

the improved PSO algorithm. The improved PSO algorithm is 

one of the PSO algorithm variants, which modifies the inertia 

weight in the velocity update equation of the PSO algorithm 

as a linear time-varying parameter. The inertia weight is 

started with a large value and linearly decreased to a smaller 

value that leads to a better performance in the evolution 

progress. When the inertia weight is large, the PSO algorithm 

behaves like a global search algorithm. Conversely, when the 

inertia weight is small, the PSO algorithm behaves like a local 

search algorithm. This also means that a larger inertia weight 

facilitates a global exploration and a smaller inertia weight 

tends to facilitate a local exploration.  

 

The simulation results show that the IM efficiency is 

significantly improved, especially for light loads using the 

flux optimization strategy obtained by the proposed PSO 

algorithm regardless of load variations.  

It can be realized that the obtained IM efficiency by using 

the proposed PSO algorithm is always remained optimal and 

better than that obtained by using the PSO algorithm. 

Furthermore, the convergence speed and value of the 

proposed PSO algorithm are better than the PSO algorithm. 

 

Table 1. IM specifications and parameters 

 

Number of phases 3 

Connection Star 

Number of poles 4 

Rated power 3 Hp (~ 2.24 kW) 

Line voltage (RMS) 230 V 

Line current (RMS) 9 A 

Rated speed 1430 rpm 

Rated torque 14.96 N m 

Rotor construction Wound rotor with slip rings 

Stator resistance 0.55  

Stator inductance 0.068 H 

Magnetizing inductance 0.063 H 

Rotor resistance 0.72  

Rotor inductance 0.068 H 

Moment of inertia 0.05 kg m2 
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Fig. 1  Flow chart for flux optimization strategy of the IM 

drive system 
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Fig. 2  IM efficiency with the rated rotor flux reference 
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Fig. 3  IM efficiency with the flux optimization strategy 

obtained using the improved PSO algorithm 
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Fig. 4  Best fitness versus the iteration step number of the 

PSO algorithm 
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Fig. 5  Best fitness versus the iteration step number of the 

improved PSO algorithm 
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