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Abstract— We extended contraction mapping theorem and 

proved as a consequences the unique solution of an ordinary 

linear differential equation in some none convex sets. We also 

generalized Picard theorem to p-convex sets of ℝ². Further, we 

extended one of the classical theorems in fixed point theorem 

 

Index Terms—Fixed point theorem, Picard theorem, 

Existence and Uniqueness theorem, None linear differential 

equation, p-convex set, None locally convex space. 

I. INTRODUCTION 

We generalize the contraction mapping theorem to some 

none convex sets of ℝ². As a consequence we prove, by 

using a fixed point theorem, that the differential 

equation 
  

  
        has a unique solution, where ƒ is a 

continuous mapping from ℝ² to ℝ (theorem (2.1)). 

        Further, we prove that if   ℝ  is a metric space 

of a real numbers with a metric defined by a p-norm 

        and f is a differential function of a unit ball B 

of X, such that its differential satisfies 

|     |                    
 
    

then f has a fixed point. (theorem (2.2)). 

        As an application we generalize Picard theorem for a 

p-convex open set. (theorem (2.3)). 

II. EXISTENCE-UNIQUENESS THEOREM IN NONE LOCALLY 

CONVEX SPACES 

        The following theorem generalizes the contraction 

mapping theorem to establish an existence-uniqueness 

theorem for none linear differential equations in some none 

locally convex cases. 

 

        Theorem (2.1) Let f  be a continuous mapping from ℝ² 

to ℝ and satisfies Lipchitz condition with respect to y, 

     ‖             ‖   ‖   ‖
 

                   (2.1) 

 

in some neighborhood N of       ℝ , which is p-convex. 

Then the differential equation 
  

  
 ƒ                                                           

(2.2)  

has a unique solution in some neighborhood which may be 

none convex of  a. 
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   Proof . We observe that (2.2) is equivalent to the integral 

equation 

                              ∫  (      )  
 

 
                       (2.3) 

We consider a set M of functions, and a mapping   on  . 

The image    of a function y with values      will be given 

by 

                      ∫  (      )  
 

 
                                 

(2.4) 

   Let us discuss, how we can find a set of functions which is 

mapped into itself by T. We first choose a compact convex 

neighborhood Ñ of       inside N and containing B, where 

   (       )  {        ℝ  |    |  |    |   }        

(2.5) 

       , then f is bounded on Ñ, say 

                       |       |                                        (2.6) 

   If y is a function with graph in the p-convex neighborhood 

Ñ (see figure 1) we have 

|       |  |∫ (      )  

 

 

|  ∫| (      )|  

 

 

 

                           |∫   
 

 
|    |   |                                      

(2.7) 

This means that if y is a continuous function defined for 

                                 |   |                                                         
(2.8) 

for which |      |     , then Ty satisfies the same 

condition. We must choose d small enough for the p-convex 

neighborhood (figure 1), and to be in Ñ. We then define M 

to be the set of continuous functions with graphs in B, and 

our argument shows that M is mapped into itself by T. We 

use the upper bound norm on M. To ensure that T is a 

contraction mapping we should also arrange, in choosing d, 

that we have     , as it will be shown. 

        Hence we have, for y and z in M, 

|           |  |∫ ( (      )   (      ))   
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                        ∫| (      )   (      )|  

 

 

 

                                | (      )   (      )| 
then 

|           |        |         |                          
(2.9) 

from (2.1). Consequently 

‖     ‖        |           | 

                             |         |    

                     ‖   ‖           |         |    

                         ‖   ‖                                            

(2.10) 

From (2.1), and if     , T is a contraction mapping. Then 

by the contraction mapping theorem, T has a unique fixed 

point in M .This means that there is a unique function in M 

which represents the solution of (2.2). Since any solution of 

(2.2) is in M (for d sufficiently small), there is a unique 

solution of (2.2). ■ 

   In what follows we extend one of the classical results in 

fixed point theorem. 

   Theorem (2.2) Let   ℝ  be the metric space of real 

numbers with a metric defined by 

       ‖   ‖  |     |
  |     |

                   ,    

(2.11) 

and 

   (       )  {        |  |
  |  |

   }  
Consider a differential function 

      

such that 

     ‖     ‖                    
 
                              

(2.12) 

Then f  has a fixed point. 

        Proof.  By Lagrange's mean value theorem, given by 

A. Bayoumi [1], we have for any       , 

                       ‖    ‖ ‖   ‖                         

(2.13) 

for some,  

    
 
 {   

 

        
 

         }      

    Hence, by Bayoumi [1, cor.6, p 95] 

‖         ‖   ‖   ‖ 

                                                                          

(2.14) 

If there exists      such that         
 ‖     ‖  

‖    ̃ ‖       for all  ̃    
    open in B, then f is 

a contraction mapping on B. Thus by Banach contraction 

mapping theorem there exists a unique fixed point    , 

i.e.,       . Therefore, z is the solution of the equation 

      . ■ 

        We apply now the Banach contraction mapping 

theorem to prove Picard theorem. Let us first introduce the 

following definition.  

        Definition  (p-convex set). A set A in a vector space is 

said to be p-convex         if for every          
  , we have 

     
 

 ⁄    
 

 ⁄                                  
(2.15) 

This is equivalent to saying that, for every       

                                                           
(2.16) 

A is said to be "absolutely p-convex" if for every       

        

for | |  | |   , See Rolewicz [4]. If    , we have of 

course the definitions of convex and balanced convex sets. 

For example, the unit ball          of space           

is p-convex. It is in fact absolutely p-convex, see A. 

Bayoumi [1]. 

 

         On the same lines as in theorem (2.1) we prove the 

following theorem. 

          Theorem (2.3) (Generalized Picard theorem). Let 

       be a continuous function of two variables in a p-

convex set 

  {       | |  | |         } 
and satisfies Lipchitz condition of order 1 in the second 

variable y. Further, let be         an interior of A. Then the 

differential equation                   

                                        
  

  
                                                  

(2.17)    has a unique solution, say        which passes 

through   .    

 
Proof.  First of all, we show that the problem of determining 

the solution of Equation (2.17) is equivalent to the problem 

of finding the solution of an integral equation. In fact if 

       satisfies equation (2.18) and has the property that 

        , then by integrating equation (2.17) from    to x 

, we get 

                
             ∫  (      )  

 

  
 

        ∫  (      )  
 

  

}          (2.18) 

   Thus a unique solution of equation (2.17) is equivalent to 

a unique solution of equation (2.19). For determining the 

solution of equation (2.17), we may apply Banach 

contraction mapping theorem. 

    Since        satisfies the Lipchitz condition of order 1 in 

 , there exist a constant     such that 

                |               |   |     |                       
(2.19) 

Since        is a continuous on a compact subset   of  ℝ , 
it is bounded and so there exists a positive constant m such 

that 

                                                                             

(2.20) 

Choose a positive constant   such that       and the 

rectangle 
  {     |                             }         

(2.21) 

is contained in  . 

   Let X be the set of real-valued continuous function 

       defined on [          ] such that 

               
    X is closed subset of the metric space    [        

 ]  (denote the set of all real valued continuous functions 
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     defined on the closed interval [         ] with the 

distance 

            [           ]           
                                                    |           |

  

is complete metric space), with sub metric, hence it is a 

complete metric space since every closed subset of a 

complete metric space is complete. Let       be defined 

as     , where 

        ∫ (      )  

 

  

 

Since 

               | ∫  (      )  

 

  

|

 

 

                              
                              

(2.22) 

      , and so T is well defined. For        

 

                   

                          | ∫[ (      )   (       )]  

 

  

|

 

 

      ∫    | (      )   (       )|
 
  

 

  

 

                        ∫ |          |   
 

  
              

(2.23) 

or 

                                                                           

(2.24) 

where         . Hence, T is a contraction mapping 

of   into itself. By Banach contraction mapping theorem 

  has a unique fixed point     . This unique fixed 

point   , is the unique solution of equation (2.17). ■ 
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