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 

Abstract— In this work we apply the Newton type of local and 

nonlocal internal body fluxes to create the constitutive law for 

the internal body fluxes. We obtain the integral differential 

equations of the stated heat conduction problem and consider 

the steady and unsteady linear and nonlinear one dimensional 

problems. The analytical solutions of the problems are obtained 

using theoretical analysis, differentiation of the integral 

differential equation and the method of separation of variables. 

 
Index Terms—Integral differential equation, local and 

nonlocal internal body fluxes.  

 

I. INTRODUCTION 

The statement of the problems in heat conduction usually 

includes the surface heat fluxes inside the body and they do 

not consider the constitutive law for internal body flux 

[1]-[4].The body fluxes are considered as the internal or 

external heat sources. Then the linearized theory must accept 

the nonphysical singularities in temperature field. The 

introduction of the internal body fluxes allows improving of 

the heat problems at least in the sense of excluding the 

nonphysical point singularities.  

 

II. INTERNAL SURFACE AND BODY FLUXES 

 

Consider a body and let us take some control volume, 

which includes a fixed number of particles. The control 

volume is surrounded by a control surface. The particles 

which are inside the control surface are called internal 

particles and they belong to the control volume. The particles 

which are outside the control volume are the external particles 

and they do not belong to the control volume. All other 

particles belong to the boundary particles of the control 

volume. There are interactions between particles for example, 

according to Newton’s law of cooling; the resultant of 

interactions applied to all internal particles of the control 

volume from the external particles is the internal body flux. 

The interactions applied to the boundary particles of the 

control volume from the external particles are the surface 

fluxes. The Fourier law could be accepted for the internal 

surface heat fluxes and the Newton’s cooling law is taken to 

describe the nonlocal body heat fluxes.  
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III. STATEMENT OF HEAT CONDUCTION PROBLEM 

Consider the classical heat conduction problem with the 

equation according to [1] 
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where zyx ,,  are the Cartesian orthogonal coordinates, t  is 

time, ),,,( tzyxu  is the temperature, ),,( zyx  is the 

mass-density of the body per unit volume, 0c  is the specific 

heat, k  is the coefficient of thermal conduction, 0q  is a rate 

of internal body heat flux per unit volume, 1q  is a rate of 

internal heat generation per unit volume produced in the body. 

The introduced in (1) term 0q  could be taken using the 

Newton’s law of cooling in the form of a sum of local and 

nonlocal fluxes 

0 0 0
,loc nlocq q q                                                     (2) 

 

where 

0 1
( , , ),locq u x y z                                             (3) 

  

 

0 2

1
( , , , ) ( , , , )nlocq u x y z t u t d d d




      


   

      (4) 

where  is the volume of the body, 
1 2
,   are constants in 

Newton’s law of cooling, which can depend in general on the 

coordinates of the body. Let us take them constant, 0   is a 

constant The much more general internal body flux can be 

taken into account using the similar approach as in [5]. 

The correspondent initial and boundary conditions should 

be added to create a well posed initial boundary value 

problem.  

It was shown in [2] that D2  and D3  heat problems have 

nonphysical solution in case of a given point boundary 

condition. This forces to look for a new model which could 

include the physical solution into consideration.  

 

IV. METHODOLOGY AND RESULTS 

In this paper we consider two simple problems in the 

suggested heat conduction model. The first one is a one 

dimensional steady state problem and the second one is about 

a time dependent solution. 

Note, that the integral term in differential equations causes 

difficulties in analysis. Therefore, we have to modify and 

generalize classical methods. As the result the analytical 
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solutions of the problems are obtained by separation of 

variables and differentiation of the integral differential 

equation. 

V. PROBLEM 1. STEADY STATE CASE 

Consider the particular case of the problem stated in section 3. 

The equation is 

 

 
2

2
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0

( ) ( ) 0
ld u

k u u x u s ds
dx l 


   

    (5) 

 

where lx 0 . 

The equation (5) can written in the form  
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               (6) 

Where 

               2
1 1

.
l 


 


                                            

(7) 

The boundary conditions are taken as follows 

 

0)0( uu  , 1)( ulu                              (8) 

 

Differentiating (6) one gets 

 

0 uuk                          (9) 

 

The general solution of (9) is 

 

132 CeCeCu
x

k
x

k 




             (10) 

 

where 1C , 2C , 3C  are constants of integration. 

These constants can be obtained satisfying (6) and the 

initial conditions (8). 

Substituting (10) into (6) one gets 
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If the length is infinite then (11) will be an identity only 

if 

                 
1 3
0, 0.C C                                        

(12) 

Consider the case of finite length. If the length is finite 

then the integral in (11) is zero and integrating we obtain 
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where  
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                                       (14) 

Substituting (10) into the boundary conditions (8) we get 

              
1 2 3

0,C C C                                 (15) 

              
1 2 3

e e .
l l

k kC C C
 



                             (16) 

The system of linear algebraic equations (13), (15), (16) 

has the following solution 

              , 1,2,3,i
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The case l  can be obtained from the solution  (10) 

and the conditions (8) if 
1 3
0, 0.C C  . Then 
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x
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                                    (22) 

 

Using the conditions (8) we obtain the representation of 

the solution (10) of the problem (6)-(8) in the form 

1

0
( )

x
ku x u e




                                       (23) 

and 

                
1
0.u                                                            (24) 

 

Remark. If l  and 0  then we have the classical 

case of the problem and the continuous solution  in this 

case does not exist. 

 

VI. PROBLEM 2. THE TIME DEPENDENT PROBLEM 

 

     Consider the equation  
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subject to the boundary conditions  

 

0),(),0(  tlutu                              (26) 

 

and to the initial condition 

 

),()0,( xfxu                                 (27) 
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where )(xf  is the given distribution of the temperature 

at the time 0t . 

To obtain the solution of the problem (25)-(27) we apply 

the method of separation of variables which gives us the 

representation of the solution in the form 

 

)()(),( tTxXtxu                            (28) 

 

Substituting (28) into (25) we get 
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0

0

l

c XT kX T XT XTdx
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
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and dividing (29) by XT  yields 

 

2
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T c X c c l X



 
   
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where   is a constant. 

The boundary conditions (26) imply that 

 

0)0( X , 0)( lX                           (31) 

 

To determine   consider (30). 
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Differentiating (32) we obtain 

 

0)( 0  XcXk                    (33) 

 

Now we consider (33) subject to the conditions (31). 

The following cases are possible: 

a) Let 00   c . 

Denote 
k

c
k

 0
1


 , then the solution of (33) is 

 

xkCxkCCX 13121 sincos           (34) 

 

Substituting the solution (34) into (32) we get 
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or  
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The conditions (31) imply that  

 

1 2
0,C C                         (38) 

 

2 1 3 1 1
cos sin 0.C k l C k l C          (39) 

 

Consider the determinant of the system of linear 

homogeneous equations (36), (38), (39). 
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The equation (40) yields 
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and the roots of (41) can be found analytically 
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Then we obtain 12 CC   and 3C  is an arbitrary 

constant. 

1
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1
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.
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k l
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Then the solution of the problem (31), (32) consists of 

two sets of functions 
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b) Let 00   c .  

Then (33) becomes 0X  and  

2
321)( xCxCCxX                       (49) 
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Substituting (49) into (32) we get 
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The boundary conditions  (31) imply 

1
0,C                                                                 (52) 

2

1 2 3
0.C C l C l                                          (53) 

The solution of the linear algebraic system of equations 

(51), (52), (53) is 

1 2 3
0, 0, 0C C C                                     (54) 

and only zero solution exists in this case 

 ( ) 0.X x                                                         (55) 
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Substituting (56) into (32) we get 

2 21 0
1 2 3

0 02

( )
0

l l
k x k xс l

C C e dx C e dx
 




    

  (57) 

or 

1 0 2
1 2 3

2

( )
( 1) ( 1) 0.kl klc k l

C C e C e
 






     
,.  (58) 

The boundary conditions (31) are 

1 2 3
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The dete3rminant of the system of linear algebraic 
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The solution of the linear algebraic system of equations 

(58), (59), (60) is 

1 2 3
0, 0, 0C C C                                     (61) 

and only zero solution exists in this case 
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Then the following formal solution of the problem (25) 

-(26) is obtained 

1

1

1

1

0

( , ) sin n t

n
n

n x
u x t C e

l





 
  

 
 ,    

  2

2 2 1

2 0

1 cos sin e .
2

n t

n n n
n

m
C N x N x






 
   

 


(65) 

The initial condition (27) should be used to obtain the 

constants
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The Fourier coefficients are as follows 
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VII. CONCLUSION 

The main results of this work are the obtained analytical 

explicit forms (10), (65) of the solutions of the new statements 

of the heat conduction problem. 
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