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 

Abstract— There are many complex and important 

industrial fluids such as polymer solutions, suspensions, blood, 

paints, oils and greases exhibiting complex rheological 

behaviour. Several empirical rheological models have been 

proposed for representing the viscosity function of these 

non-Newtonian fluids. Among them, the Power law (Ostwald-de 

Waele) model is the most widely used and it was found to be very 

simple and versatile in describing shear-thinning (suspensions, 

emulsions, polymeric fluids) as well as shear-thickening (highly 

loaded suspensions of very fine particles; e.g., starch, plaster. . .) 

behaviour. In this paper, the non-Newtonian fluid flow in a 90° 

curved pipe is studied numerically to obtain the additional 

pressure loss coefficient resulting from the bend for different 

values of Reynolds. 

 

 

Index Terms— CFD, 90° Pipeline, Non-Newtonian fluid, 

Pressure loss coefficient, Simulation.  
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I. INTRODUCTION 

  Fluids are a major part in any industry. The usage of any 

fluid in industry requires its transport in pipelines, these pipe 

lines contains many singularities from diffusers, elbows, 

pumps and others.  So for a good design of these pipelines one 

must have a good overview of the laws governing this flow 

and the losses in pressure from this law and how does the fluid 

behave in these pipes to have a control over them. 

The fluids with nonlinear behaviour [5] conforms to the 

known power law; they are nevertheless considerably less 

studied compared to Newtonian fluids. The consequences of 

shear thinning need to be identified for a better understanding 

of the structure of the flow.  

The assumption that the flow is fully developed in regions 

where it remains under strong influence of the inlet boundary 

conditions can seriously underestimate the design of flow 

systems and incorrectly assume specific velocity profile 

shapes leading to wrong conclusions in the interpretation of 

data [11]. 

A detailed discussion of the inconsistencies and confusion in 

literature is provided by Durst et al. [10], who conducted a 

detailed numerical study and proposed nonlinear correlations 

for pipes and channel for Newtonian fluids. 
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In this paper, one is interested in the laminar flow of the 

non-Newtonian shear thinning fluids, in a 90 degree pipe bend 

(Fig.1).  

The mathematical model is represented by the equations of 

continuity and conservation of movement quantity [8]. The 

Rheological behaviour is given by the power law of (Ostwald 

of Waele). We intend to determine by numeric way the 

structures of the dynamic fields of this flow. In addition, we 

are going to study the influence of Reynolds number and the 

shear thinning characters on the dynamic field and on the 

evolution of the pressure loss and the establishment length. 

 The development or the use of software is indispensable to 

the resolution of this kind of problems. The discretization of 

the system of equations is done numerically by finite volume 

method that is implemented to numerical modelling software 

“Ansys-Fluent” [8]. 

In pressure drop calculations it is an accepted practice to 

consider that the flow is fully developed in straight pipes, 

while all other effects (flow distortions, redevelopment) in a 

sudden symmetric expansions/contractions, pipe bends and 

other obstacles are introduced using local loss coefficients. 

 

II.  MATHEMATICAL MODEL  

The general equations governing the laminar flow of 

incompressible fluids are: 

(i). Continuity Equation 

  

(ii). Movement Equation 

 

 is the velocity vector,  the stress tensor,  the 

density and  the pressure. 

The general conservation equations governing the isothermal 

flow in pipes are written by adopting the system of cylindrical 

coordinates. 

In addition the following simplifications are adopted: 

1. Stationary flow. 

2. Incompressible flow (density is constant). 

3. Axisymmetric flow in cylindrical pipe. 

4. The radial pressure gradient is negligible. 
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(iii). Simplified Continuity Equation 

  

(iii). Simplified Movement Equation in z Direction 

 

(iv). Simplified Movement Equation in r Direction 

 

In addition to the following boundary conditions: 

(v). Condition of non-sliding at the wall 

 

(vi). At the axis of symmetry 

 

For the problem of the establishment length, we have a 

constant axial velocity profile: 

 

Where  is the pipe radius,  the axial velocity,  the radial 

velocity,   is the apparent viscosity and  is the mean 

velocity. 

The Simulation was done by the software “fluent” using the 

model of Herschel-Bulkley [5] for   < . 

We note that the equation used is Ostwald de Waele, but to 

solve this problem having our study fluid of this type, we 

choose to adopt as law behavior the equation corresponding 

to Herschel-Bulkley fluids in non-Newtonian critical stress. 

Recall that the model of Herschel-Bulkley is given by: 

 

Having  “the yield stress threshold” equal to zero the 

preceding equation becomes the Ostwald de Waele equation: 

  

The consistency K of the fluid is found in terms of Reynolds 

number Re and the power index n for a cylindrical pipe and in 

between two plates [4]: 

  

  

 

In this chapter, we have established the mathematical partial 

differential equations governing the laminar flow of 

non-Newtonian pseudoplastic fluid and the software used 

"Ansys-Fluent" is responsible for the discretization and 

numerical solution. 

III. NUMERICAL MODELLING  

(i). Geometry and Boundary Conditions 

The geometry of a pipe bend is shown schematically in (Fig.2) 

together with the coordinate system adopted. It is composed 

of a 90˚ bend of curvature radius, upstream and downstream 

tangents of length L1 and L2.For solving the governing 

equations, at the inlet, an axial velocity is assigned a 

fully-developed laminar velocity profile. The fully developed 

velocity profile for the inlet conditions was prepared for each 

Reynolds number. To obtain significant results, simulating as 

much as possible the actual fluid flow, passes first through a 

good discretization of the flow field. Recall that the golden 

rule of a good mesh is more finely meshed possible areas 

subject to strong variations of flow parameters and especially 

the entrance area of the pipe, where the maximum disturbance 

is due to the singularity of start-up. In our case, the mesh is 

made in "Ansys", this software allows the design of the 

geometry of the flow, the discretization of its edges, the mesh 

flow areas and to define the type of each side (boundary 

conditions) as shown in figure 1. It was agreed to appoint a 

mesh with a pair of numbers corresponding respectively the 

numbers of discretization points of the sides of the flow field, 

respectively in the axial and radial direction.  
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Figure 1: The geometry of the 90° bend pipe under 

consideration with boundary conditions. d and D are 

respectively the pipe and the bend curvature diameters. 

 

Figure 2: The 3-dimensional mesh draw using “Ansys”. 

 (ii). Numerical Procedure and Simulation 

The components of speed in the equations of momentum are 

bound to the pressure, which creates a main difficulty for their 

mathematical resolution. Indeed, if the field of pressure is 

taken in account in the treatment of these equations, the gotten 

speeds verify the equation of continuity, but the pressure is a 

fully-fledged variable, although it doesn't have an equation. 

We use a method of speed prediction-correction then 

according to the pressure; the equation of conservation of the 

mass is transformed to get pressure equation, so that the 

solution of the streamlined problem gives a field of speed and 

pressure verifying the equations of momentum and continuity 

equation. 

We introduce the flow parameters in the software where the 

law of (Ostwald de waele) is defined rheological for the 

non-Newtonian fluid of index n and consistency K; where K is 

obtained from Reynolds and n using the equation (11) for 

cylindrical coordinate system. 

 

The transport equations are solved by a fully-implicit finite 

volume method in a segregated formulation on an 

unstructured staggered mesh. Space discretization is based on 

the power law scheme for the convection terms while 

diffusion terms are approached by central difference 

approximation and the velocity pressure coupling is treated 

using SIMPLER algorithm [9]. A steady-state solution is 

supposed to be obtained when the residuals of all transport 

equations reach   in non-dimensional form.  

 

Figure 3: Evolution of simulation residual values. 

The residual effect shows that for every point we have a 

number of iterations take place in order to converge to the 

solution the process repeats itself continuously to have a 

convergence limit. The final convergence is determined by 

measuring residual source of each variable. The residual 

sources are defined for each variable at each point and for 

each iteration. 

As we can see from the above graph(fig 3) that values  and   

coincide on each other, the value of   was enough as 

convergence criterion. It starts the simulation and it makes the 

number of iterations needed to reach convergence. 

 (ii). Velocity Profile 

In the entrance zone before the pipe bend we have an 

established velocity profile which is in an increasing way until 

it takes the parabolic form as shown in the following figure 4. 

The velocity profile in the entrance zone is expressed in 

equation (12): 

  

Where r is the radial distance of the flow, the radius of the 

pipe R=0.5 and 0 < r < R. “u” is calculated and the obtained 

results for n= 0.3, 0.4, 0.6, 0.8 and 1are listed in the following 

graph (5): 

 

Figure 4: Inlet Velocity profile [3] 

We observe in fig. 4 that as “n” decreases the plasticity zone 

increases and the shear rate deformation occurs more on the 

edges of the surface, and when the index structures reaches 1 

which corresponds to Newtonian behavior ;the fluid is not 

affected by shear deformation and it moves smoothly. 

Once the mesh is achieved; we can start the numerical 

calculation. The simulations are performed on "Ansys-fluent". 

This software has a user interface that allows easy handling, a 

significant display and easy access to Digital results, which 

makes software responsible to run a simulation.  

We introduce flow parameters software and especially the law 

is defined theologically for the fluid used by the index 
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structure „n‟ and by the consistency K as shown in the 

following figure 5. 

 

Figure 5: Input parameters 

IV. PRESSURE DROP AND CORRELATION 

 (i). Pressure Evolutions 

Numerical results are obtained for different values of 

Reynolds number ranging from 50 up to 1000, for a structure 

index varying between 0.3 and 1, and for different values of 

the geometric ratio D/d. we plot the pressure as a function of 

the center line of pipe bend. 

We plot simultaneously for every Reynolds number the 

corresponding power law indexes n ranges between 0.3 and 1. 

For example figure 6 shows the evolution of the pressure 

(made dimensionless using the square root of the flow mean 

velocity) at the centerline of the pipe for Re = 250, D/d = 6 

and for different values of n. Figure 7 shows the evolution of 

the pressure drop coefficient as a function of the Reynolds 

number for D/d = 4 and for different values of n. 

 

Figure 6: Evolution of the pressure at the centerline of the 

pipe for Re = 250, D/d = 6 and for different values of n. 

 

Figure 7: Evolution of the pressure drop coefficient as a 

function of the Reynolds number for D/d = 4 and for different 

values of n 

The above figures (6-7) are two of many graphs that we have 

achieved by making different simulations varying (D/d, Re, 

n). In the next section we are interested to get a correlation for 

the pressure drop coefficient covering the range of the control 

parameters (Re, n, and D/d). 

 (ii). Correlation and results 

In this study, correlations for the pressure drop coefficient 

were obtained covering the range of the control parameters 

(Re, n, and D/d) due to the presence of the elbow in the 

cylindrical pipe applying the following equation: 

  

Where   is the pressure drop coefficient in the pipe,  

is the equivalent length of the pipe assuming it is straight and 

  is the length of the pipe bend. 

Knowing    we can set up    as a function of 

Reynolds and trace it in the following graph. 

For example figure (8) represent the evolution    for D/d 

=2 as a function of Reynolds for different values of n ranged 

from n=0.3 to 1. 

 

Figure 8: Evolution of   L_eq/L_elbow   as a function of 

Reynolds number for different values of n for D/d=2 
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As we can see from the above graph that each line passes 

through the origin which insure the fact that as Re tend to zero  

 tends to 1 and as D/d tends to infinity      

 

After doing similar graphs for D/d=3, 4, 5, 6 and 8. The 

function     is found to be similar to the relation:  

  

Where A (n) is the slop of the curve above. 

In order to find the correct correlation between (n, Re and D/d) 

we draw the evolution of the slope A (n) as a function of n=0.3, 

0.4, 0.6, 0.8 and 1 for different values of D/d as shown in 

figure 9. 

 
Figure 9: Evolution of the slopes for different index structure 

(n) for D/d=6. 

The other graphs are similar to this one but instead of showing 

them we show their respective equation in the following table. 

D/d A(n) 

D/d=2 1.560  n 

D/d=3 8.104  n 

D/d=4 5.228  n 

D/d=5 3.894  n 

D/d=6 3.201  n 

D/d=8 2.375  n 

Table 1: Slope A (n) as a function of D/d and n 

Now, the same procedure we are interested in the evolution of 

the slope A (n) as a function of D/d. 

The evolution is presented in fig.10. 

 
Figure 10: Evolution of the slopes as a function of (D/d). 

We have  

  

And 

  

Then, 

  

Finally we have:  

  

So the pressure drop coefficient correlation: 

  

 

V. DYNAMIC STUDY OF THE ESTABLISHMENT 

LENGTH 

In this chapter we will study the behaviour in the pipe elbow 

area, a non-Newtonian fluid non-complex thermo-dependent 

flowing in a cylindrical industrial pipe, where the axial 

velocity profile constantly evolving until it takes its final 

shape of establishment for laminar flow.  

The establishment length can be calculated using the formula 

below figure 11: 

  

 
Figure 11: Establishment length 
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The axial velocity was found from our numerical study for 

several Reynolds numbers and power indexes as the example 

below figure 12: 

 
Figure 12: Axial velocity 

Some study results are grouped in the tables below: 

n\RE 50 100 250 500 1000 

0.3 ___ 1.4676 8.7651 18.1928 34.7112 

0.4 ___ 2.3012 10.1774 20.1083 39.3219 

0.6 1.3705 3.9501 11.9056 23.961 50 

0.8 1.968 4.9708 13.5459 28.6624 54.429 

1 2.4188 5.6697 15.3815 31.102 58.429 

Table 2: Establishment length for D/d=2 for deferent Re and n 

values 

Following the same steps as in the pressure drop study we can 

reach for a correlated form for the establishment length. 

 
Figure 13: Variation of the slope B(n) as a function of index n 

for D/d=2 

The establishment length can be correlated in the form of: 

  

Where B(n) is of the form: 

  

The final form for the establishment length was found to be: 



VI.  CONCLUSION 

Steady and laminar flow of a non-Newtonian fluid in a 90◦ 

pipe bend was studied numerically taking the advantage of 

Ansys and fluent programs numerical codes.  

First a theoretical approach was used in order to obtain the 

equation for pressure loss that occurs due to a presence of a 

pipe bend. To do so, one-dimensional analysis for the fully 

developed pressure drop in a straight pipe was incorporated in 

the overall pressure drop that occurs in a pipe bend as well as 

in an upstream and downstream tangent. 

Meshes, was performed to study the influence of grid 

refinement on numerical predictions. In addition, a technique 

was used to quantify the numerical results for the total 

pressure drop (ptot) and the pressure drop between the 

entrance and exit of a bend (pbend). 

After we found the pressure drop coefficient we had made a 

correlation to find the equivalent pipe bend length. 

This study needs continuity and requires the study of the 

influence of various peculiarities already mentioned on 

dynamic and kinetic aspects using the software calculations 

adopted. 
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