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Abstract— Recently H. Sakaguchi and B.A Malomed proposed 

a novel technique for finding the long wavelength solutions of 

the Gross Pitaevskii equation.  We have applied the technique of 

Sakaguchi and Malomed to the Sine Gordon equation and 

derived the equivalent conservation equation. The results are 

applied to the Josephson junction.  

 

Index Terms— Conservation equation, Josephson junction, 

Kink solution, Long Wave length soliton solution, Sine Gordon 
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I. INTRODUCTION 

  Sine Gordon Equation is a partial differential equation 

which appears in differential geometry and relativistic field 

theory. The equation, as well as several solution techniques, 

was known in the 19th century, but the equation grew greatly 

in importance when it was realized that it led to solutions 

("kink" and "antikink") with the collisional properties of 

solitons. The sine-Gordon equation also appears in a number 

of other physical applications, including the propagation of 

fluxons in Josephson junctions (a junction between two 

superconductors), the motion of rigid pendula attached to a 

stretched wire, and dislocations in crystals.  

  Recently H. Sakaguchi and B. A. Malomed in their seminal paper [1] proposed a novel expansion technique (2) to obtain the long wavelength Soliton solutions for the Gross-Pitavskii equation. By substituting the expansion (2) in the nonlinear differential equation we obtain (by comparing coefficients) the effective equations in 

the long wavelength region.  The effective equation is put in 

the form of a conservation law (4). The spatial component of 

the conservation law is an eigenvalue equation. However for 

Sine Gordon, variable transformations are required to obtain 

the corresponding Schrodinger equation. The formalism so 

obtained is applied to the Josephson junction. 

 

II. SINE GORDON EQUATION IN THE LONG WAVE LENGTH 

LIMIT 

The Sine –Gordon equation is
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We look for solutions of the form [1] 
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where
(0) ( , )x t and 

(1) ( , )x t  are slowly varying 

functions of  x and t in comparison to  cos(2x) and                                                    
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Using the expansion [8] 
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Where ( )nJ x  is the Bessel Function 
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Equating the coefficients of cos2x 
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Collecting the terms and sub in (11) in (10) one obtain
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Where  
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Note that (13) confirms to the condition for a double well 

potential well and there by existence of tanh soliton [9]. 

 Let us look for travelling wave solutions of the sine-Gordon 

equation (5.1) of the form                                         

(1) ( )f x vt     (14) 

Using (14) in (12) we get 
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Equation (17) represents a localized solitary wave, called kink 

soliton solution  We note that  tanh soliton solution have been 

found in Josephson’s junction (in the long wavelength limit) 

which are governed by the Sine Gordon equation. Such  

domain wall soliton solutions have been observed in 

switching experiments using Nb/Ru/Sr2RuO4 junctions [10].   

III. CONSERVATION EQUATION 

We now derive the conservation equation [2, 4-6] 

corresponding to (6). Define 


such that 
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Using these substitutions in (1) we obtain 
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This can be This can be written as a conservation equation  
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This gives the equation                            
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Where c is a constant, We take this c=0              

IV. APPLICATION TO JOSEPHSON JUNCTIONS. 

Josephson junction consists of two super conductors 

separated by a thin oxide layer. Each super conductor is 

characterized by a wave function 1 2,   and phase given by 

the expressions 
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Josephson’s phase is defined as 
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Josephson’s phase satisfies   the Sine-Gordon equation (1).  In 

the long wavelength limit the Josephson’s phase satisfies (5). 

Josephson’s phase is a function of both space and time. The 

spatial integral defined as 
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The spatial integral of Josephson’s phase is a conserved 

quantity as derived in (12). Further   satisfies the 

eigenvalue equation (15). We use   the boundary condition 

0 as x L . We use the trial solution 
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Subtracting (26) from (25) we obtain 
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This implies                            3kL in                                                                            

  (30) 

Since L  is real k must be imaginary. In other words (25) 

represents an oscillatory solution. Let  

                                          k i                                                                                                                    
(31) 

Where  is a real quantity. Substituting (30) in (29) we get 
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This defines wave-vectors in (26). Note that only certain wave 

vectors are permissible. This is expected, as we are in the 

quantum domain where only discrete states are allowed.  

      

V. CONCLUSION 

We found the long wave length kink soliton solution of Sine 

Gordon equation. We have derived the conservation equation 

of Sine Gordon equation in the long wavelength limit. The 

kink solution in this limit as well as conservation laws in this 

limit are derived. The results are applied to the Josephson’s 

junction and we found Josephson’s phase exhibits spatial 

sinusoidal oscillations. Further we find that the spatial integral 

of the Josephson’s phase is a conserved quantity. 
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