

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-6, June 2015

 61 www.erpublication.org

Abstract— Energy Efficient High Speed Floating Point

Arithmetic Unit is introduced in this paper where power

optimization has been done. In this paper, the concept of

Floating Point (FLP) operation into a single arithmetic logic

unit (ALU) that can perform multiplication, subtraction and

addition more rapidly, accurate and less complex has been

reviewed. The merit of floating point is that precision is

maintained with a wide dynamic range, where fixed point

numbers lose precision

Index Terms— ALU, FLP, IEEE-754, IEEE-854

I. INTRODUCTION

Floating-point arithmetic was taken as a mysterious topic by

several people. This was rather surprising because floating-

point was omnipresent in computer systems. Almost every

language had a floating-point data type; computers from

PCs to supercomputers have floating-point accelerators [1];

most of the compilers would be called upon to compile

floating-point algorithms from time to time; and practically

every operating system must react to floating-point

exceptions such as flooded [2]. An arithmetic-logic unit

(ALU) was the part of a computer processor (CPU) that

carried out arithmetic and logic operations on the operands

in computer instruction words. In several processors, the

ALU was split into two units, an arithmetic unit (AU) and a

logic unit (LU). Some processors contained one or more AU

- for example, one for fixed-point operations and another for

floating-point operations. Usually, input and output

approach to the processor controller, main memory (random

access memory or RAM in a PC), and input/output devices

had been directly done the ALU [2] - [3]. A bus was an

inputs and outputs flow along an electronic lane. The input

consisted of an instruction word (occasionally called a

machine instruction word) that contained an operation code

(occasionally called an "op code"), one or more operands,

and occasionally a format code. What operation to perform

and the operands were used in the operation was told by the

operation code to the ALU (For example, two operands

might be added together or compared logically) [4].The

format might be combined with the op code and it was told,

for example, whether this was a floating-point or a fixed-

point instruction. The output consisted of a result that was

placed in a storage register and settings that indicated

Somya Kumawat, student M.Tech (VLSI), Jagan Nath University,

Jaipur, India.
Arpan Shah, Assistant Professor Department of ECE, Jagan Nath

University, Jaipur, India.

Ramesh Bharti, Associate Professor Department of ECE, Jagan Nath
University, Jaipur, India.

whether the operation was performed successfully [5]. (If it

wasn't, some sort of status would be stored in a everlasting

place that was sometimes called the machine status word).

[6]

Usually, the ALU included storage places for input

operands, operands that were being added, result stored in

an accumulator, and shifted results [7]. Gated circuits

controlled the flow of bits and the operations performed on

them in the sub units of the ALU. The gates in these circuits

were controlled by a series logic unit that used a particular

algorithm or series for each operation code. Multiplication

and division were done by a series of adding or subtracting

and operations which done shifting in the arithmetic unit [8].

There were several ways to represent numbers which are

negative. In the logic unit, one out of 16 possible logic

operations could be performed - such as comparing two

operands and identifying where bits do not match. A

floating-point group could be used to represent with a fixed

number of digits, numbers of dissimilar orders of

magnitude: e.g. the distance between galaxies or the

diameter of an atomic nucleus could be expressed with the

same unit of length [9] - [10]. The result of this dynamic

range was that the numbers that could be represented were

not uniformly spaced; the diversity between two consecutive

numbers grows with the selected scale.

Floating-point numbers were well defined by IEEE-754

(32 and 64 bit) and IEEE-854 (variable width)

specifications. Floating point had been used in processors

and IP for years and was a well-understood system. This

was a sign magnitude system, where the sign was processed

a different way from the magnitude [10]. There were many

concepts in floating point that made it unusual from our

common signed and unsigned number notations. These

came from the definition of a floating-point number [11].

All the floating point numbers were made up of

following components:

 Sign: it indicated the sign of the number (0 positive

and 1 negative)=1 bit

 Mantissa: it place the value of the number=23 bits

 Exponent: it contained the value of the base power

(biased)=8 bits

 Base: the base (or radix) was suggested and it was

common to all the numbers (2 for binary numbers

We had used the following packages [11] - [12]:

Denormalize – Boolean: This was used to turn on and off

denormal numbers. The default was true (permit denormal

numbers)

Round_style – round_type: This was used to denote the

rounding style to be used. The default was “Round_nearest”

and the most hardware was taken by it. A truncation,

round_inf and round_neginf round up or down were done by

Round_zero depending on whether the number was positive

or negative.

Energy Efficient High Speed Floating Point

Arithmetic Unit

Somya Kumawat, Arpan Shah, Ramesh Bharti

Energy Efficient High Speed Floating Point Arithmetic Unit

 62 www.erpublication.org

Check_error – Boolean: Infinity processing and turns off

NAN. At the commencement of every operation these

checks were needed and if we had already checked once we

needed not check again.

Guard_bits – natural: This was the number of extra bits

used on each operation to preserve accuracy. The default

was 3. But rounding was automatically turned off, if we

took this down to zero.

No_warning – Boolean: Permit us to turn off the

“metavalue” warnings by setting this to “false”.

Float_exponent_width: For conversion routines, it was

default. Set by default to the size of a 32 bit floating point

number (8).

Float_fraction_width: For conversion routines, it was

default. Set by default to the size of a 32 bit floating point

number (23).

II. ALGORITHMS

A. Adder

1. Take two floating points numbers.

2. Separate the numbers into mantissa and exponent.

3. Find the larger exponent. Let say Ex and Ey.

4. If Ex=Ey then only add the mantissa together.

5. If exponents are not same then normalize to higher

exponent ,let Ex > Ey then

a. Find the difference between

exponents Ex-Ey

b. Shift mantissa of smaller number

right by difference Ex-Ey

c. Set exponent of result Ez to

bigger exponent Ex

6. Now that exponent are identical add mantissa

together, mantissa of result Mz = Mx + My .

7. Set sign of result according to previous result.

B. Subtractor

1. Take two floating points numbers.

2. Separate the numbers into mantissa and exponent.

3. Find the larger exponent. Let say Ex and Ey.

4. If Ex=Ey then only subtract the mantissa.

5. If exponents are not same then normalize to higher

exponent, let Ex > Ey then

a. Find the difference between

exponents Ex-Ey

b. Shift mantissa of smaller number

right by difference Ex-Ey

c. Set exponent of result Ez to

bigger exponent Ex

6. Now that exponent are identical, subtract mantissa,

mantissa of result Mz = Mx + My

7. Set sign of result according to previous result.

C. Multiplier

1. Take two floating points.

2. Separate the numbers into mantissa (Mx, My)and

exponent (Ex, Ey).

3. Calculate the sign of the result from the sign of the

inputs.

4. Add the exponents Ex + Ey.

5. Multiply the mantissa Mx * My.

6. Store the result by combining the sign, mantissa

and exponent.

III. RESULTS

Fig 1 Graphical Comparison of Power

Fig 2 Graphical Comparison of Delay

Fig 3 Graphical Comparison of Area

Fig 4 Graphical Compar

ison of Delay * Power

 POWER DELAY AREA
DELAY(ns)*

POWER

146

148

150

152

154

Previous
Design

Proposed
Design

POWER(mW)

POWER(mW)

26
27
28
29

Previous
Design

Proposed
Design

DELAY(ns)

DELAY(ns)

0

500

1000

Previous
Design

Proposed
Design

AREA(No. of LUTs)

AREA(No. of
LUTs)

3.8

4

4.2

4.4

Previous
Design

Proposed
Design

DELAY(ns) * POWER
(mW)

DELAY
(ns)*POWER
(mW)

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-6, June 2015

 63 www.erpublication.org

(mW) (ns)
(No. of

LUTs)
(mW)

PREVIOUS

DESIGN
153 28.743 838 4.397

PROPOSED
DESIGN

149 27.505 634 4.098

Table 1 Overall Comparison of Previous Design and Proposed Design

IV. CONCLUSION

Table 1 shows the Overall Comparison of Previous Design

and Proposed Design. It was clear that there is a decrease in

circuitry, power consumption, time consumption as

compared to the previous design, also the overall

performance (delay (ns) *power (mW))is reduced by 6.8%.

REFERENCES

[1] Jagannath Samanta, Mousam Halder, Bishnu Prasad De” Performance
Analysis of High Speed Low Power Carry Look-Ahead Adder Using

Different Logic Styles” International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, pp. 330–
336 2013

[2] Kihwan Jun and Earl E. Swartzlander, “Modified Non-restoring

Division Algorithm with Improved Delay Profile and Error
Correction” Signals, Systems and Computers (ASILOMAR), pp.

1460-1464, 2012

[3] Nicolas Boullis and Arnaud Tisserand, “On digit-recurrence division
algorithms for self-timed circuits”, in Research Report published at

Institut National De Recherche En Informatique Et En Automatique,

France, 2012
[4] Jongwook Sohn and E. E. Swartzlander, Jr. , "Improved Architectures

for a Fused Floating-Point Add-Subtract Unit," IEEE Trans. on

Circuits and Systems-I, vol 59, pp. 2285-2291, Oct. 2012.
[5] Xilinx13.4, Synthesis and Simulation Design Guide”, UG626 (v13.4)

January 19, 2012.

[6] Manish Kumar Jaiswal, Ray C.C. Cheung, “VLSI Implementation of
Double-Precision Floating-Point Multiplier Using Karatsuba

Technique”, 2012 IEEE 26th International Parallel and Distributed

Processing Symposium Workshops & PhD Forum
[7] M.Al-Ashrafy, A.Salem and W.Anis,“An Efficient Implementation of

Floating Point Multiplier ” Electronics Communications and

Photonics Conference(SIECPC) 2011 Saudi International, pp.1-
5,2011

[8] Mohamed Al-Ashrfy, Ashraf Salem and Wagdy Anis “An Efficient

implementation of Floating Point Multiplier” IEEE Transaction on
VLSI 978-1-4577-0069-9/11@2011 IEEE, Mentor Graphics

[9] M. K. Jaiswal and R. C. C. Cheung, “High Performance FPGA

Implementation of Double Precision Floating Point
Adder/Subtractor”, in International Journal of Hybrid Information

Technology, vol. 4, no. 4, (2011) October

[10] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of
Floating Point Multiplier”, Saudi International Electronics,

Communications and Photonics Conference (SIECPC), (2011) April

24-26, pp. 1-5.
[11] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of

Floating Point Multiplier”, Saudi International Electronics,

Communications and Photonics Conference (SIECPC), (2011) April
24-26, pp. 1-5.

[12] D. Sangwan and M. K. Yadav, “Design and Implementation of

Adder/Subtractor and Multiplication Units for Floating-Point
Arithmetic”, in International Journal of Electronics Engineering,

(2010), pp. 197-203.

[13] Hani Hassan Mustafa Saleh, Fused Floating-Point Arithmetic For
DSP, Ph.D. Dissertation, University of Texas at Austin, 2009.

[14] E. Quinnell, E. E. Swartzlander, Jr. , and C. Lemonds, "Bridge

FloatingPoint Fused Multiply-Add Design," IEEE Trans. on VLSI
Systems, vol. 16, pp.l727-1731, 2008

Somya Kumawat, Student of M.Tech in Jagan Nath University, Jaipur.

I have completed my M.Tech (VLSI) in 2015 from Jagan Nath University
and B.Tech degree in 2013 from Rajasthan Technical University. I am

currently working in the VLSI field

Arpan Shah, Assistant Professor Department of ECE in Jagan Nath

University, Jaipur, India. He has completed his M.Tech (VLSI) in 2012

and publish various research papers in field of VLSI and Embedded
System. He has guided more than 10 M.Tech students for their research

work.

Ramesh Bharti, Associate Professor Department of ECE in Jagan Nath

University, Jaipur. He is currently pursuing PhD from Jagan Nath

University. He has completed his M.Tech (ECE) in 2010 from MNIT
Jaipur, and B.E degree in 2004 from Rajasthan University. He is currently

working in the wireless communication.

