

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 231 www.erpublication.org



Abstract— point numbers are widely adopted in many

applications due their dynamic representation capabilities.

Floating –point representation is able to retain its resolution and

accuracy compared to fixed–point representations.

Unfortunately, floating-point operators require excessive area

for conventional implementations. High speed floating point

arithmetic unit using least area is an important considerations

for system designers. Here, we are aiming to fulfill major

requirements of DSP Processors such as high speed and least

area utilization. In the given architecture, floating point

numbers are represented in single precision IEEE 754 floating

point format. The basic building blocks of arithmetic unit are

addition, subtraction, multiplication and division units. The

algorithms for ADDSUB unit (for addition and subtraction

operation), multiplier unit and division unit have been coded in

VHDL language and simulated using Model Sim10.1c PE, and

synthesized using Precision Synthesis RTL 2011 individually.

An additional algorithm has been written in VHDL language for

the floating arithmetic unit to integrate all the units like add sub,

multiplier and division. The complete architecture of arithmetic

unit using pipelined technique has been simulated using Model

Sim10.1c PE and Synthesized using Precision Synthesis RTL

2011. We used XILINX Spartan3 xcs400pq208 for placement,

routing, to generate plan overhead and implementation. The

complete architecture of arithmetic unit uses 100 no. of IO’s and

2368 no. of LUT’s. It is successfully running with clock

frequency of 6.93 MHz frequency. The simulation result has

been verified by downloaded the complete VHDL code of

arithmetic unit into the field programmable gate array trainer

kit of XILINX Spartan3 xcs400pq208.

Index Terms—FPGA, ADDSUB, VHDL, LUT’s.

I. INTRODUCTION

In the complex and high speed designs requires the high speed

floating point arithmetic units. To meet such high speed

requirement it is also necessary that the Arithmetic Unit has to

be area efficient. Several design approaches has been already

developed and implemented like Single cycle Architecture,

Parallel/ Pipelined Architecture, Fused Architecture and. A

very popular method to achieve high speed is the pipelining.

This architecture provides the desired speed to work fast with

consuming less area. The main objective was to implement

the floating point arithmetic algorithms using pipelining

architecture with reduced Area. [1]

So the initial problem was to choose the appropriate floating

point arithmetic algorithm suitable for pipelining architecture.

After the selection of Algorithm I decided to implement this

using VHDL because it is very much suitable Hardware

Description Language for system level design. The

implementation of floating point algorithm has been done

Dharna Awasthi M.Tech, EC Department, Mewar University

Chittorgarh, Rajasthan, INDIA.

Ajay Kumar Yadav Asst. Professor in C.E.R.T. Meerut India

using top~ down approach. Each sub modules has been

designed, simulated and verified to make the

Addition/Subtraction, Multiplication and Division module.

These modules then combined to make the complete floating

point unit. [2]

The complete unit is simulated and verified using Model Sim

10.1c PE. After the successful completion of simulation phase

the main focus was to synthesized the code to achieve

optimum Results such as Area, Timing and Power. [3]The

Synthesis is done by Precision Synthesis. The timing analysis

is then carried out also the Critical Path Analysis is

performed. After the optimization the code is ready to

implement on the target device which is XILINX Spartan 3

xcs400pq208 FPGA.

II. FLOATING POINT ARITHMETIC

Floating Point Addition and Subtraction

 The floating point addition and subtraction is quite

complex compared to multiplication and division. In the

addition process the exponent of the two numbers must be

same if not so we need to align it by shifting it to the right or

left and adjusting the mantissa accordingly. Then we add or

subtract the two numbers.[4]

Approach 1

1-Find exponent difference d = e1-e2. If e1 < e2, swap

position of mantissas. Set larger exponent as tentative

exponent of result.

2-Pre-align mantissas by shifting smaller mantissa right by d

bits.

3-Add or subtract mantissas to get tentative result for

mantissa.

4-Normalization. If there are leading-zeros in the tentative

result, shift result left and decrement exponent by the number

of leading zeros. If tentative result overflows, shift right and

increment exponent by 1-bit.

5-Round mantissa result. If it overflows due to rounding, shift

right and increment exponent by 1-bit.

Approach 2

The floating point addition and subtraction algorithm is

Consider the two floating point numbers x1 and x2.

Where are the sign, are the significant

(mantissa) and are the exponents of the two numbers

respectively. The addition/subtraction of two numbers will be

FPGA Implementation Of Pipelined Architecture Of

Floating Point Airthmetic Unit

Dharna Awasthi, Ajay Kumar Yadav

FPGA Implementation Of Pipelined Architecture Of Floating Point Airthmetic Unit

 232 www.erpublication.org

1. First we unpack the number and segregate the sign,

exponent and significant bits. Add the implied bit in

significant. Also we check for the special conditions and

special numbers.

2. To perform the addition exponent must be same. For this

we subtract the two exponents and shift the significant by

the subtraction result. In subtraction one of the numbers

is inverted.

3. After aligning the significant we add the two significant if

both signs are equal otherwise subtract the two numbers.

4. The result of addition might fall into the either overflow or

underflow category so we need to have normalization. If

there are leading-zeros in the tentative result, shift result

left and decrement exponent by the number of leading

zeros. If tentative result overflows, shift right and

increment exponent by 1-bit.

5. Round significant result. If it overflows due to rounding,

shift right and increment exponent by 1-bit.

 4- Floating Point Multiplication

1. First unpack the two numbers, separate the sign,

exponent and mantissa bits. Also check for the

special condition specifies by the IEEE 754 standard

such as weather the no. is NaN or infinity or zero.

2. Then multiply the two mantissas and add the

exponent. Also the bias value needs to be subtracted

with the exponent addition result.

3. Calculate the sign of the result by XORing of the two

sign bits.

 4- Normalize and round the result, if necessary

Figure 1. Flow chart for Multiplication Unit

Approach 2

The second approach is quite similar to the earlier one but the

only difference is that this algorithm performs the floating

point multiplication process in two stages, the figure shows

the floating point multiplication process[a].[5]

Consider the two floating point numbers

Where are the sign, are the significant

(mantissa) and are the exponents of the two numbers

respectively. The multiplication result of the two can be

written as

III. IMPLEMENTATION OF FLAOTING POINT

ARITHMETIC UNIT

Figure 2. Block diagram of Floating Point AU

1) 6-The Addition/Subtraction Unit

The Addition and Subtraction unit is implemented with the

pipelined architecture. The complete design consists of no. of

sub-modules. These sub modules then arranged in six stages.

The detailed description and block diagram is given below.

Figure 3. Block diagram of pipelined Add/Sub unit

a) Stage 1

In this stage we take the 32-bit floating point no. as an input

and separate the sign bit, 8-bit of Exponent and the remaining

Significant. The block we use for this operation is the Unpack

block. This block used for unpack the floating point no. used

as input. This blocks separates the mantissa, exponent and

sign of the input number along with it also checks the special

condition such as weather the no. is infinity[6]

Unpack the two no.

Add the Exponent;

multiply the mantissa

Sign_out = Sign (A) XOR

Sign (B)

 Round the output

Check for Exceptions

and Normalize if

necessary

FP_Z

_DIV

FP_Z

_MU

LT

FP_Z

_ADD

SUB

M

U

X

OPC

ODE

DIVIDE

R

MULTI

PLIER

ADD/SU

B

FP

_A

FP

_B

S

t

a

g

e

1

S

t

a

g

e

2

S

t

a

g

e

3

S

t

a

g

e

4

S

t

a

g

e

5

S

t

a

g

e

6

FP_B

FP_A

 ADDSUB

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 233 www.erpublication.org

Stage 2

 After the separation of input no. we need to align the mantissa

as mentioned in the algorithm and swap the no. if necessary.

So this stage contains this part of algorithm which deals with

aligning and swapping of the two numbers. The Align and

Swap block are used for the respective operations

Stage 3

The different types of circuit techniques used follow a In the

third stage we perform the addition operation. The subtraction

operation is done by 2’s complement method. So for this we

need to invert one of the numbers. This is done by the invert

unit.

b) Stage 4

u After the addition operation we need to normalize the result.

Also in the subtraction process the result needs to be

complemented again. This is done by the Selcomplement

Unit. The result of addition is normalized by Add_normalize

Unit.

The normalization unit uses the idea of checking the leading

zeros in the result.For this a leading zero detector unit is also

used. The Selcomplement unit performs the inversion of the

result which may be produced by subtraction using 2’s

compliment addition method.[7]

IV. SIMULATION RESULTS

Figure 4 waveform for special condition check for add/sub

unit

Figure 5 waveform for add/sub unit under normal operation

Figure 6 waveform for MULTIPLICATION unit

Figure 7 waveform for DIVISION unit

V. CONCLUSION

I have presented some floating point arithmetic algorithms

(addition, subtraction, multiplication and division) that are

suited for implementing the Floating Point Arithmetic Logic

Unit with the Pipelined Architecture. The algorithms have

been coded in VHDL. The simulation of VHDL

implementation of floating point arithmetic algorithms have

been carried out using ModelSim 10.1c PE. The simulated

code has been synthesized with Precision Synthesis using

XILINX Spartan 3 xcx400pq208 FPGA as targeted device.

Area Utilization has been optimized and Timing Report along

with Power Report has also been analyzed. Timing Violations

and Critical Path analysis has been carried out too. Placement,

Floor Planning and Routing is then performed. Finally the

code downloaded in the Field Programmable Gate Array and

verified manually with the simulation result generated by the

tools. With the help of comparison table it has been verified

that this design has less area compared to its older counterpart

REFERENCES

[1] Sahin Suhap, Kavak Adnan, Becerikli Yasar and Demiray H. Engin.

Implementation of Floating Point Arithmetic using an FPGA.

[2] Khare Kavita, Singh R.P. and Khare Nilay. Comparison of pipelined

IEEE-754 standard floating point adder with unpipelined adder. Journal

of Scientific and Industrial Research.

[3] Al-Asharfy Mohamed, Salen Ashraf and Anis Wagdy. An Efficient

Implementation of Floating Point Multiplier.

978-1-4577-0069/11/$26.00 ©2011 IEEE.

[4] Sharma Subhash Kuamr, Pandey Himanshu, Sahni Shailendra and

Srivastava Vishal Kumar. Implementation of IEEE 754 Addition and

FPGA Implementation Of Pipelined Architecture Of Floating Point Airthmetic Unit

 234 www.erpublication.org

Subtraction for floating point unit. International Transactions in

Mathematical Science and Computer.

[5] Saini Deepa and M’dia Bijendar. Floating point Unit Implementation on

FPGA. International Journal of computational Engineering Research.

[6] Reaz Mamun Bin Ibne, Islam Md. Shabiul and Sulaiman Mohd. S.

Pipelined floating point ALU design using VHDL. ICSE 2002, Periag,

Malaysia.

[7] Tiwari Asish, Singh Rajit Ram, Singh Vinay Kumar and Tomar Geetan S.

VHDL Envoirnment for floating point Arithmetic Logic Unit ALU

design and Simulation. International Conference on Communication

system and Network Technology.

[8] Brant Richard P. and Zimmermann. Modern Computer Arithmetic

[9] Parhami Behrooz. Computer Arithmetic Algorithms and Hardware

Designs, Published by Oxford University press, 2000.

[10] Riya saini, R.D.Daruwala/ international journal of Engineering

Research and Applications

Dharna Awasthi M.Tech, EC Department, Mewar University

Chittorgarh, Rajasthan, INDIA

Ajay Kumar Yadav Asst. Professor in C.E.R.T. Meerut India

