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Abstract— 3D discrete wavelet transforms (dwt) is a 

compute-intensive task that is usually implemented on specific 

architectures in many real-time medical imaging systems. In this 

work, novel area-efficient high-throughput 3d dwt architecture 

is proposed based on distributed arithmetic. a tap-merging 

technique is used to reduce the size of DA lookup tables. The 

proposed architectures were designed in VHDL and mapped to 

a Xilinx vertex-e FPGA. The synthesis results show the 

proposed architecture has a low area cost. Wavelet analysis is an 

exciting new method for solving difficult problems in 

mathematics, physics, and engineering, with modern 

applications as diverse as wave Propagation, data compression, 

signal processing, image processing, pattern recognition, 

computer graphics, the detection of aircraft and submarines and 

other medical image technology. Wavelets allow complex 

information such as music, speech, images and patterns to be 

decomposed into elementary forms at different positions and 

scales and subsequently reconstructed with high precision. 

Signal transmission is based on transmission of a series of 

numbers. The series representation of a function is important in 

all types of signal transmission. The wavelet representation of a 

function is a new technique. Wavelet transform of a function is 

the improved version of Fourier transform. Fourier transform is 

a powerful tool for analyzing the components of a stationary 

signal. But it is failed for analyzing the non stationary signal 

where as wavelet transform allows the components of a 

non-stationary signal to be analyzed. In this dissertation, our 

main goal is to find out the advantages of wavelet transform 

compared to Fourier transform 

 

Index Terms—DWT, DA, FPGA.  

 

I. INTRODUCTION 

  The wavelet transform is similar to the Fourier transform (or 

much more to the windowed Fourier transform) with a 

completely different merit function. The main difference is 

this: Fourier transform decomposes the signal into sines and 

cosines, i.e. the functions localized in Fourier space; in 

contrary the wavelet transform uses functions that are 

localized in both the real and Fourier space. Generally, the 

wavelet transform can be expressed by the following 

equation: 
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It is seen, the Wavelet transform is in fact an infinite set of 

various transforms, depending on the merit function used for 

its computation. This is the main reason, why we can hear the 

term “wavelet transforms” in very different situations and 

applications. There are also many ways how to sort the types 

of the wavelet transforms 

(a)Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is an implementation 

of the wavelet transform using a discrete set of the wavelet 

scales and translations obeying some defined rules. In other 

words, this transform decomposes the signal into mutually 

orthogonal set of wavelets, which is the main difference from 

the continuous wavelet transform (CWT), or its 

implementation for the discrete time series sometimes called 

discrete-time continuous wavelet transform (DT-CWT). 

The wavelet can be constructed from a scaling function which 

describes its scaling properties. The restriction that the 

scaling functions must be orthogonal to its discrete 

translations implies some mathematical conditions on them 

which are mentioned everywhere, e.g. the dilation equation 

 

Where S is a scaling factor (usually chosen as 2). Moreover, 

the area between the function must be normalized and scaling 

function must be orthogonal to its integer translations, i.e. 

 

After introducing some more conditions (as the restrictions 

above does not produce unique solution) we can obtain results 

of all these equations, i.e. the finite set of coefficients ak that 

define the scaling function and also the wavelet. The wavelet 

is obtained from the scaling function as N where N is an even 

integer. The set of wavelets then forms an orthonormal basis 

which we use to decompose the signal. Note that usually only 

few of the coefficients ak are nonzero, which simplifies the 

calculations. 

In the following figure, some wavelet scaling functions and 

wavelets are plotted. The most known family of orthonormal 

wavelets is the family of Daubechies. Her wavelets are usually 

denominated by the number of nonzero coefficients ak, so we 

usually talk about Daubechies 4, Daubechies 6, etc. wavelets. 

Roughly said, with the increasing number of wavelet 

coefficients the functions become smoother. See the 

comparison of wavelets Daubechies 4 and 20 below. Another 
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mentioned wavelet is the simplest one, the Haar wavelet, 

which uses a box function as the scaling function. 

 

Haar scaling function and wavelet (left) and their frequency 

content (right). 

 

Daubechies 4 scaling function and wavelet (left) and their 

frequency content (right). 

 

Daubechies 20 scaling function and wavelet (left) and their 

frequency content (right). 

There are several types of implementation of the DWT 

algorithm. The oldest and most known one is the Mallat 

(pyramidal) algorithm. In this algorithm two filters – 

smoothing and non-smoothing one – are constructed from the 

wavelet coefficients and those filters are recurrently used to 

obtain data for all the scales. If the total number of 

data D = 2
N
 is used and the signal length is L, first D/2 data at 

scale L/2
N - 1

 are computed, then (D/2)/2 data at scale L/2
N - 2

, 

up to finally obtaining 2 data at scale L/2. The result of this 

algorithm is an array of the same length as the input one, 

where the data are usually sorted from the largest scales to the 

smallest ones. Within Gwyddion the pyramidal algorithm is 

used for computing the discrete wavelet transform. Discrete 

wavelet transform in 2D can be accessed using DWT module. 

Discrete wavelet transform can be used for easy and fast 

denoising of a noisy signal. If we take only a limited number 

of highest coefficients of the discrete wavelet transform 

spectrum, and we perform an inverse transform (with the 

same wavelet basis) we can obtain more or less Denoise 

signal. There are several ways how to choose the coefficients 

that will be kept. Within Gwyddion, the universal 

thresholding, scale adaptive thresholding [2] and scale and 

space adaptive thresholding [3] is implemented. For threshold 

determination within these methods we first determine the 

noise variance guess given by 

 

Where Yij corresponds to all the coefficients of the highest 

scale sub band of the decomposition (where most of the noise 

is assumed to be present). Alternatively, the noise variance 

can be obtained in an independent way, for example from the 

AFM signal variance while not scanning. For the highest 

frequency sub band (universal thresholding) or for each sub 

band (for scale adaptive thresholding) or for each pixel 

neighborhood within sub band (for scale and space adaptive 

thresholding) the variance is computed as 

 

Threshold value is finally computed as 

 

 

Where 

 

 

When threshold for given scale is known, we can remove all 

the coefficients smaller than threshold value (hard 

thresholding) or we can lower the absolute value of these 

coefficients by threshold value (soft thresholding). 

 

DWT denoising can be accessed with Data 

Process → Integral Transforms → DWT Denoise. 

 

 

(b) Continuous Wavelet Transform 

Continuous wavelet transform (CWT) is an implementation 

of the wavelet transform using arbitrary scales and almost 

arbitrary wavelets. The wavelets used are not orthogonal and 

the data obtained by this transform are highly correlated. For 

the discrete time series we can use this transform as well, with 

the limitation that the smallest wavelet translations must be 

equal to the data sampling. This is sometimes called Discrete 

Time Continuous Wavelet Transform (DT-CWT) and it is the 

most used way of computing CWT in real applications. In 

principle the continuous wavelet transform works by using 

directly the definition of the wavelet transform, i.e. we are 

computing a convolution of the signal with the scaled wavelet. 

For each scale we obtain by this way an array of the same 

length N as the signal has. By using M arbitrarily chosen 

scales we obtain a field N×M that represents the 

time-frequency plane directly.  The algorithm used for this 

computation can be based on a direct convolution or on a 

convolution by means of multiplication in Fourier space (this 

is sometimes called Fast Wavelet Transform).The choice of 

the wavelet that is used for time-frequency decomposition is 

the most important thing. By this choice we can influence the 

time and frequency resolution of the result. We cannot change 

the main features of WT by this way (low frequencies have 

good frequency and bad time resolution; high frequencies 

have good time and bad frequency resolution), but we can 

somehow increase the total frequency of total time resolution. 

This is directly proportional to the width of the used wavelet 

in real and Fourier space.  

 

http://gwyddion.net/documentation/user-guide-en/wavelet-transform.html#wavelet-transform-ref-2
http://gwyddion.net/documentation/user-guide-en/wavelet-transform.html#wavelet-transform-ref-3
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II. MODEL OF PROPOSED WORK 

 (A)Combination of three 1D DWT in the x, y and z directions 

 
 

Be considered as a combination of three 1D DWT in the x, y 

and z directions, as shown in Fig. 1. The preliminary work in 

the DWT processor design is to build 1D DWT modules, 

which are composed of high-pass and low-pass filters that 

perform a convolution of filter coefficients and input pixels. 

After a one-level of 3D discrete wavelet transform, the 

volume of image is decomposed into HHH, HHL, HLH, HLL, 

LHH, LHL, LLH and LLL signals 

 

(B) Lifting Scheme 

 

Lifting Scheme The basic idea behind the lifting scheme is 

very simple; try to use the correlation in the data to remove 

redundancy [4, 5]. First split the data into two sets (split 

phase) i.e., odd samples and even samples as shown in Figure 

 

(C) the lifting scheme: Split, predict, update and scale 

 
 

 

(D) 1-D lifting scheme of daubechies 9/7 for forward 

Wavelet DWT 

 

 
 

Because of the assumed smoothness of the data, we predict 

that the odd samples have a value that is closely related to 

their neighboring even samples. We use N even samples to 

predict the value of a neighboring odd value (predict phase). 

With a good prediction method, the chance is high that the 

original odd sample is in the same range as its prediction. We 

calculate the difference between the odd sample and its 

prediction and replace the odd sample with this difference. As 

long as the signal is highly correlated, the newly calculated 

odd samples will be on the average smaller than the original 

one and can be represented with fewer bits. The odd half of 

the signal is now transformed. To transform the other half, we 

will have to apply the predict step on the even half as well. 

Because the even half is merely a sub-sampled version of the 

original signal, it has lost some properties that we might want 

to preserve. In case of images we would like to keep the 

intensity (mean of the samples) constant throughout different 

levels. The third step (update phase) updates the even samples 

using the newly calculated odd samples such that the desired 

property is preserved. Now the circle is round and we can 

move to the next level. 

 We apply these three Steps repeatedly on the even samples 

and transform each time half of the even samples, until all 

samples are transformed. 

 

III. CONCLUSION & FUTURE WORKS  

 

Due to their capability to localize in time, wavelet transforms 

readily lend themselves to no stationary signal analysis. 

Detection of short duration events, on the other hand, is 

limited in Fourier analysis by the width of the windowing 

function used in the short-time Fourier transform. Wavelet 

transforms exist that project a finite energy function onto to an 

orthonormal basis of L2(R). The corresponding multi 

resolution analysis decomposes the function into a set of 

details at different resolutions and a smoothed version of the 

original function. As with the Fourier transform, a "fast 

wavelet transform" exists. However, the fast wavelet 

transform generates a multi resolution analysis in O ( n) time; 

Whereas, a fast Fourier transform takes (n log n) time. Our 

intent in this paper was to present the basic concept of the 

wavelet transform from a viewpoint that targets signal 

analysis applications. Much of the current literature utilizes a 

high level of mathematical terminology. Our hope was to 
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provide an brief introduction to the primary underlying ideas 

in a relatively intuitive manner. For those who are interested, 

we provide an annotated bibliography that includes some of 

the key papers in the field. With each listing is a short 

description of the contents. Most of the papers require an 

understanding of Fourier analysis and sometimes an 

understanding of more general functional analysis principles. 

To help specify the mathematical sophistication of a paper, 

we adopt a relative rating scale, based upon our experience of 

reading the papers, 1 meaning little or no mathematical 

sophistication 
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