

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 148 www.erpublication.org

Abstract— Procedural Content Generation (PCG) is the

branch of AI that deals with generating content algorithmically.

It is used to reduce the cost of content creation while creating

new types of content at a much greater speed with reduced effort.

We aim to implement PCG by using Vasconcelos Genetic

Algorithm (VGA) and the concept of Difficulty Curves. The

obstacles patterns in the game will be generated procedurally at

run time. Here, we provide the detailed characteristics of a

difficulty curve and explain the specifics that go into making a

balanced curve that keeps the game interesting and maintains a

proper level of challenge for the player. Since the game focuses

on endless content generation, the random or repetitive obstacle

patterns would reduce the 'fun' factor of the game because user

can get used to it and can also predict the content generated in

such games. The game's content will be generated on the basis of

a difficulty curve which will be adjusted depending on the

progress of the user.

Index Terms— procedural content generation; games;

genetic algorithms; difficulty scaling; game design.

I. INTRODUCTION

 Gaming, as an industry is growing at an amazing rate and

the expectations that players have from game content are

rising with each released game title. To meet these demands

game development studios incur rising costs in terms of

payment to artists and programmers that supply that content

along with the time required to develop such content. This

gives rise to a unique application of AI algorithms, focusing

more on the creative and artistic side of the game content

rather than the strategic and tactical aspect of it; thus saving

significant expense by producing desirable content

algorithmically.

Procedural content generation (PCG) refers to creating

game content automatically, through algorithmic means. In

this paper, the term game content refers to all aspects of the

game that affect gameplay other than non-player character

(NPC) behaviour and the game engine itself [1].

 Even established game companies can benefit from PCG,

using it to generate 3D worlds, missions and other types of

content. However, the first problem facing a game designer

wanting to incorporate PCG techniques is the loss of control

over the generated content. One of the main arguments against

procedural content generation by the representatives of the

gaming industry, at least when discussing online content

Ninad Kulkarni, Paritosh Desai, Suraj Jaiswal, Sachin Chauthe,

B.E. Student, Department of Information Technology, Atharva College Of

Engineering, Mumbai.

Yogini Bazaz, Assistant Professor, Department of Information

Technology, Atharva College Of Engineering, Mumbai.

generation, difficulty scaling and artificial intelligence

adaptation, is the lack of reliability. Due to the manner in

which most commercial games are designed, presenting

content that is unplayable to the player is simply

unacceptable.

II. PREVIOUS WORK

Continuing on our previous work [3], we have attempted to

lay down the specific requirements of the curve generation

process and the characteristics that define it. In this section

author should discuss about related research has been done in

the same domain or related domains with the name of the

researcher and should be mentioned in the references. While

in our previous paper we only outlined the general idea of

scaling difficulty in an endless runner based on a difficulty

curve that is generated in real time, in this paper we lay down

the specifics and develop an algorithm to create a difficulty

curve on the fly.

III. PROPOSED METHODOLOGY

A. Difficulty Curves & Procedural Content Generation

 Though PCG overcomes challenges that occur in general

game development, it has certain problems of its own;

dynamic scaling of the difficulty level so as to match to the

skill of the player. Also, the content must be correct and

playable. Testing content for correctness and playability adds

to the overhead of PCG content generation.

 By using difficulty curves, some of these issues can be

addressed. The curves allow the difficulty of a level to be

tuned with gradual increments or decrements as per the wish

of the designer.

 We aim to extend the system of difficulty curves used by

Diaz-Furlong [2] so that the curve generation process is

automatic and continuous.

IV. LEVEL GENERATION PROCESS

In this section author need to describe experimental /

simulation results with graphs and appropriate tables.

The difficulty curve is designed keeping the theory of

flow in mind. The curve should find a balance between the

player’s skill level and a sense of challenge that’s needed to

engage the player. The curve is defined by specifying certain

points on it. The curve needs to be virtually limitless since

there is no concept of a fixed level length in the game. The

min and max levels of difficulty on the curve are gradually

increased on the curve as the player makes progress in the

game.

In order to keep the level of curve based around the

progress of the player, a “Base Point” is established as a

central point to generate a curve for each patch. This Base

Point is itself dependent on the number of patches that have

Endless Runner using Procedural Content Generation

& Real-Time Difficulty Curve Generation

Ninad Kulkarni, Paritosh Desai, Suraj Jaiswal, Sachin Chauthe, Yogini Bazaz

Endless Runner using Procedural Content Generation & Real-Time Difficulty Curve Generation

 149 www.erpublication.org

been produced already i.e. the “Patch Number” (an indicator

of the player’s progress).

Every curve is 2000 units long and corresponds to the

length of a single patch. It is generated by forming a spline

curve based on 21 Control Points (Generated by our

algorithm) which occur at equidistant points with a gap of 100

each. The only exception being the very first point of the

curve which will always be equal to the value of the Base

Point.

Each curve has the following characteristics:-

a) Base Point: Patch Number*5 + Minimum

Difficulty

b) Range of the normal points on the curve: [Base

Point – 5, Base Point + 5]

c) Peak Points (Higher Difficulty): 1, 2 or 3. Selected

at random from the array [1, 2, 2, 2, 3] for proper

probability distribution.

d) Break Points (Lower Difficulty): 1, 2 or 3. Selected

at random from the array [1, 2, 2, 3] for proper

probability distribution.

e) High Peaks: Conversion of a Peak Point to a Higher

Peak is based on probability (20% chance).

f) Low Breaks: Conversion of a Break Pont to Lower

Break is based on probability (30% chance).

g) Ascending Curve: Series of points decreasing in

difficulty. Either 3 points or 5, chosen at random.

They are sequential.

Name Lower

Limit

Upper

Limit

Probability

Normal

Points

-5 +5 -

Peak

Points

+5 +15 1 (20%)

2 (60%)

3 (20%)

Break

Points

-5 -15 1 (25%)

2 (50%)

2 (50%)

3 (25%)

High

Peaks

+10 +30 20%

Low

Breaks

-10 -30 30%

Table 4.1 Probability Distribution of Characteristics

The Curve Generation Algorithm is as follows:

1. Declare array variables xCP, yP, curve,

points;

2. Initialize value of the variable patchNum;

3. Declare constants minimumDifficulty ← 20,

splineSize ← 2000, patchMultiplier ← 5,

peakLower ← 5, peakupper ← 15,

breakLower ← -15, breakUpper ← -5,

highPeakProbablity ← 20,

lowBreakProbability ← 30, generalLower ←

-5, generalUpper ← 5;

4. Declare and initialize array variables

peakPoints ← {1,2,2,2,3}, breakPoints ←

{1,2,2,3}, ascCurve ← {3,5};

5. basePoint ←(patchNum * patchMultiplier) +

minimumDifficulty;

6. numPoints ← randElement (peakPoints);

7. numBreakPoints ←randElement

(breakpoints);

8. ascCurveLength ←randElement (ascCurve);

9. descCurveLength ← randElement

(descCurve);

10. for i ←0 to yCP.Length:

10.1 points[i] ← 0;

10.2 yCP[i] ←

UnityEngine.Random.Range(basePoint

- generalLower, basePoint +

generalUpper + 1);

11. yCP[0] ← basePoint;

12. while (true)

12.1 p ← UnityEngine.Random.Range (1,

points.Length);

12.2 If (p+ascCurveLength)<(yCP.Length)

12.2.1 low ← basePoint –

generalLower;

12.2.2 incr ←

(generalUpper-generalLower)/

ascCurveLength;

12.2.3 for i ← p to (p +

ascCurveLength)

12.2.3.1 yCP[i] ←

UnityEngine.Random.Ran

ge(low,low+incr);

12.2.3.2 points[i] ← 1;

12.2.3.3 low ← low + incr;

13. for i ← 0 to numPeakPoints

13.1 while (true)

13.1.1 p ←

UnityEngine.Random.Range

(1, points.Length-1);

13.1.2 if points[p] = 1

13.1.2.1 continue;

13.1.3 if chance(highPeakProbability) =

true

13.1.3.1 yCP[p]

←UnityEngine.Random.R

ange

(basePoint +

2*peakLower, basePoint +

2*peakUpper)

13.1.4 else

13.1.4.1 yCP[p] ←

UnityEngine.Random.Ran

ge

(basePoint + peakLower,

basePoint + breakUpper);

13.1.4.2 break;

13.1.5 points[p] ← 0;

14. for i ← 0 to numBreakPoints

14.1 while (true)

14.1.1 p ←

UnityEngine.Random.Range

(1, points.Length-1);

14.1.2 if points[p] = 1

14.1.2.1 continue;

14.1.3 if chance(lowBreakProbability)

= true

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 150 www.erpublication.org

14.1.3.1 yCP[p] ←

UnityEngine.Random.Ran

ge

(basePoint +

2*breakLower, basePoint

+ 2*breakUpper)

14.1.4 else

14.1.4.1 yCP[p] ←

UnityEngine.Random.Ran

ge

(basePoint + breakLower,

basePoint + peakUpper);

14.1.4.2 break;

14.1.5 points[p] ← 0;

15. for i ← 0 to xCP.Length

15.1 xCP[i] ←

(i)*splineSize/(xCP.Length-1);

16. curve ←splineInterpolator.CubicSpline (xCP,

yCP, splineSize);

17. curvePlotter.setCurve (curve);

Fig 4.1 Sample Curve for Patch #1

Fig 4.2 Sample Curve for Patch #1

V. CONCLUSION

One of the biggest obstacles in PCG, real-time

efficiency can be managed by tweaking a combination of

factors such as the level generation restrictions, efficiency of

the algorithm that is used to generate the content and validate

it and the level of abstraction at which the level is created. We

believe that by optimizing these factors, it is possible to use

online-PCG in various game scenarios including the one

presented by us.

Fig 5.1 Game Screenshot - 1

Fig 5.2 Sample Curve for Patch #1

VI. FUTURE SCOPE

In this case PCG (Procedural content generation)

which is heart of our project plays a very vital role. By using

this simple method can not only make game development

faster and meaningful, but will also promote the individual

developers, who can now be more focused on game’s artwork,

story etc.,and also make the more challenging and

self-defining.

Most of the games available in the market use very

generic technique for game implementation, this not only

makes users lose interest in the game but also might feel like

as if it’s just re-skinned/rebooted from some older prequels of

the corresponding game or other similar game. Our

implementation which is basically used in an endless runner

game is not just limited to endless runners only; PCG is

widely used in many other genre of games like RPG,

Rogue-like, Racing, Plat former, Dungeon Crawler, Shooters

etc. The AI makes games environment more dynamic and also

assure the users/player that situations now won’t be same later

on.

Endless Runner using Procedural Content Generation & Real-Time Difficulty Curve Generation

 151 www.erpublication.org

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne,

“Search-based procedural generation: a taxonomy and survey” IEEE

Transactions on Computational Intelligence and AI in Games,

September 2011.

[2] Diaz-Furlong Hector Adrian, An Approach to Level Design Using

Procedural Content Generation and Difficulty Curves, Computational

Intelligence and AI in Games, IEEE Transactions.

[3] Desai et al., Review Paper on PCG and Difficulty Curves, International

Journal Of Computer Science and Information Technologies, Volume

- 6, Issue - 2: April- 2015.

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne,

“Search-based procedural generation: a taxonomy and survey” IEEE

Transactions on Computational Intelligence and AI in Games,

September 2011.

[5] M . Kerssemakers, J. Tuxen, J. Togelius and G. N. Yannakakis, “A

procedural level generator», in IEEE Conference on Computational

Intelligence and Games, 2012.

 [6] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through

player modelling and track evolution,” in Proceedings of the SAB

Workshop on Adaptive Approaches to Optimizing Player Satisfaction,

2006.

