

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 130 www.erpublication.org

Abstract— Floating point arithmetic is widely used in many

areas. IEEE Standard 754 floating point is the most common

representation today for real numbers on computers. The way of

floating point operations are executed depends on the data

format of the operands. IEEE standards specify a set of floating

point formats for single precision and double precision. This

paper presents synthesis of double precision floating point

multiplier using VHDL. In this paper breakdown technique is

used for Synthesis of double precision floating point multiplier.

Double precision floating point multiplier with minimum delay

9.251 ns and with an area of 599 no of slices LUTS. Double

precision FPM targeted on a Xilinx Virtex-6 xc6vlx75t-3ff484

device.The double precision floating point multiplier was

simulated in MODEL SIM simulator and synthesized using

Xilinx ISE 13.2 tool.) floating point multiplication is widely

used in large set of scientific and signal processing computation.

Floating Point Multiplication is one of the common arithmetic

operations in these computations. An area optimized floating

point double precision multiplier is implemented on a Virtex-6

FPGA. The design achieved with an area of 599 no of slices

LUTs as compared to[1].

Index Terms—LUTs, Virtex-6 FPGA, Xilinx ISE 13.2, FPM.

I. INTRODUCTION

 Multipliers are key components of many high performance

systems such as FIR filters, microprocessors, digital signal

processors, etc. Multiplication based operations such as

multiply and accumulate(MAC) and inner product are among

some of the frequently used computation- intensive arithmetic

functions currently implemented in many digital signal

processing (DSP) applications such as convolution, fast

fourier transform (FFT), filtering and in

microprocessors in its arithmetic and logic unit. Since

multiplication dominates the execution time of most DSP

algorithms, so there is a need of area optmized

multiplier.[1]Floating point number system is a common

choice for many scientific computations due to its wide

dynamic range feature. For instance,floating point arithmetic

is widely used in many areas, especially in scientific

computation, numerical processing, image processing and

signal processing. The term floating point is derived from the

fact that there is no fixed number of digits before and after the

decimal point, that is, the decimal point or binary point can

float.[1] There are also representations in which the number

of digits before and after the decimal or binary point is fixed;

called fixed-point representations. The advantage of

floating-point representation over fixed point representation

Kanwaljeet Kaur, Mtech Student, Department Of Electronics, Yadavindra

College Of Engineering, Talwandi Sabo(Pb)- INDIA.

Parminder Singh Jassal, Assistant Professor, Department Of

Electronics, Yadavindra College Of Engineering, Talwandi Sabo(Pb)-

INDIA.

is that it can support a much wider range of values. The

floating point numbers is based on scientific notation. A

scientific notation is just another way to represent very large

or very small numbers in a compact form such that they can be

easily used for computations. Binary floating point numbers

multiplication is one of the basic functions used in digital

signal processing (DSP) application. The IEEE 754 standard

provides the format for representation of Binary Floating

point numbers in computers. The Binary Floating point

numbers are represented in Single and Double formats. The

Single precision format consists of 32 bits and the Double

precision format consists of 64 bits. The formats are

composed of 3 fields; Sign, Exponent and Mantissa.

Floating point number consists of three fields:

1. SIGN (S): It used to denote the sign of the number i.e. 0

represent positive number and 1 represent negative number.

2. SIGNIFICAND OR MANTISSA (M): Mantissa is part of a

floating point number which represents the magnitude of the

number.

3. EXPONENT (E): Exponent is part of the floating point

number that represents the number of places that the decimal

point (binary point) is to be moved.Number system is[2]

completely specified by specifying a suitable base β,

significand (mantissa) M, and exponent E. A floating point

number F has the value

F =

β is the base of exponent and it is common to all floating point

numbers in a system.

Sign Bit 8 Bit Biased

Exponent

 23Bit

Signifiacnd/

Mantissa/

Fraction

Table1.1.IEEE Single Precision Data Format

II. CHOICE OF FLOATING POINT REPRESENTATION

The way floating point operations are executed depends on

the specific format used for representing the operands. The

choice of a floating point format for the hardware

implementation of floating point units is governed by factors

like the dynamic range requirements, maximum affordable

computational errors, power consumption etc.[6] The

exponent bit width decides the dynamic range of floating

point numbers while the significand bit width decides the

resolution. The dynamic range offered by floating point units

is much higher than that offered by fixed point units of

equivalent bit width. Larger dynamic range is of significant

interest in many computing applications like in multiply -

accumulate operation of DSPs. But larger range is not needed

in all the applications.

(a) IEEE single precision data format

Synthesis of area Optimized 64 Bit Double Precision

Floating Point Multiplier Using VHDL
Kanwaljeet Kaur, Parminder Singh Jassal

Synthesis of area Optimized 64 Bit Double Precision Floating Point Multiplier Using VHDL

 131 www.erpublication.org

(b) IEEE double precision data format

Sign Bit 11Bit

Biased

Exponent

52Bit

Significand/Fraction/Mantissa

Table1.2.IEEE Doublele Precision Data Format

III. FLOATING POINT MULTIPLICATION

Decimal number are also called floating point because a

single number can be represented with one or more

significant digits depending on position of the decimal point.

Since the point floats between mass of digits that represent the

number such numbers are termed as floating point number.

floating-point multiplication, by complies with the IEEE 754

Standard, the two mantissas are to be multiplied, and the two

exponents are to be added. The sign logic is a simple XOR. In

order to perform floating-point multiplication, a simple

algorithm is realized:[6]

1. Adding the exponent of the two numbers then subtracting

the bias from their result.

2. Multiplying the significant of the two numbers

3. Calculating the sign by XOR ing the sign of the two

numbers.

2.5THE FOLLOWING STEPS ARE NECESSARY TO

MULTIPLY TWO FLOATING POINT NUMBERS

1. Multiplying the significand i.e. (I.MI * I.M2) [1]

2. Placing the decimal point in the result

3. Adding the exponents i.e. (E I + E2 - Bias)

4. Obtaining the sign i.e. sl xor s2

5. Normalizing the result i.e. obtaining I at the

MSB of the results "significant"

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

IV. IMPLEMENTATION OF DOUBLE PRECISION

FLOATING POINT MULTIPLTER

In this paper we implemented a double precision floating

point multiplier Figure 1.1 shows the multiplier structure that

includes exponents addition, significant multiplication, and

sign calculation [1]

Sign A Sign B Exp.A Exp.B Man. A Man.B

 Bias

 Fig no 1.1Multiplier structure

1.5 The breakdown of the multiply in module (fJ:lU_mul)

is broken up as follows :

product_a = mul_a[23:0] * mul_b[16:0]

product_b = mul_a[23:0] * mul_b[33:17]

product_c = mul_a[23:0] * mul_b[50:34]

product_d = mul_a[23:0] * mutb[52:51]

product_e = mul_a[40:24] * mul_b[16:0]

productj= mul_a[40:24] * mutb[33:17]

product_g = mul_a[40:24] * mul_b[52:34]

product_h = mul_a[52:41] * mul_b[16:0]

product_i =mul_a[52:41] * mul_b[33:17]

productj =mul_a[52:41] * mul_b[52:34]

V. VHDL CODE FOR MULTIPLICATION OF IEEE-754

DOUBLE PRECISION NUMBERS

VHDL code for multiplication of double precision (64-bit)

numbers is being developed and then is simulated using

Model Sim SE Plus 6.5. VHDL code is break down into small

components to handle normalisation, rounding, Exponents are

added and significands are further multiplied. Sign bit is

computed with XOR operation. Various sets of inputs are fed

to the block to get the results. The further part of the document

deals with simulation and synthesis results.

6.4 Model Sim Simulation

Consider multiplication of two decimal numbers:

Inputs:

A and B Where A= -18.5 and B = 9.5

Binary representation of operands:

A= -10010.0

B = +1001.1

Normalized representation of operands:

A= - 1.001×2^4

B = + 1.0011×2^3

IEEE representation of the operands:

Operands A = 1 10000000011

001000

0000 = 64’hc03000000000000

Operands B = 0 10000000010

001100

0000 = 64’h4023000000000000

Outputs:

A× B = -18.0× 9.5 = -1.0101011×2^(1030-1023)

= -10101011.0 = =171

Output_FPM = 64’Hc065600000000000000000000000

underflow = 0, overflow = 0, inexact = 0, exception = 0,

invalid = 0, ready = 1

VI. XILINX SYNTHESIS

This device has following attributes manifests in Table 1.2

shows the Device Utilisation Summary of the VHDL code, so

written, it is been observed that number of device parameters

used are very less. Hence, an optimum Device Utilisation is

obtained. From the timing report obtained, it is found that the

maximum combinational path delay is 9.251 ns. Maximum

combinational path delay is only for paths that start at an input

to the design and go to an output of the design without being

clocked along the way.

This design has implemented, simulated on model sim and

synthesized for VHDL. Simulation based verification is one

of the method for functional verification for design. The test

bench form top module that instantiates other module. The

simulation verification ensure that design is functionally

corrected when tested with a given set of inputs. Though it is

not fully complete, by picking random set of inputs as well as

corner cases simulation based verification can still yield

reasonably good results. The result obtained shown in figure

1.3 and figure 1.4.The following snapshots are take from

XOR +

-

Multiplier Structure

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-5, May 2015

 132 www.erpublication.org

Model Sim after timing simulation of the floating point

multiplier.

Figure 1.2 Design Summary Of Double Precision Floating

Point Multiplier

A= -18.0

B= 9.5

M= 171

Figure 1.3 Simulation Results Of Double Precision Floating

Point Multiplier

Figure 1.4 Simulation Results Of Double Precision Floating

Point Multiplier(Hexadecimal)

Consider multiplication of two decimal numbers:

Inputs:

A and B Where A= 2.2 and B = 2.2

Binary representation of operands:

A= 10.001100110011

B = 10.001100110011

Normalized representation of operands:

A= 1.0001100110011〖 ×2〗 ^1

B = 1.0001100110011×2^1

IEEE representation of the operands:

Operands

A =

010000000000000110011001100000000000000000000000

0000000000000000

B =

010000000000000110011001100000000000000000000000

0000000000000000

Outputs:

A×B = 2.2 × 2.2 =

Output FPM = 40235BF0A4000000

X =

010000000010001101011011111100001010010000000000

0000000000000000

Figure 1.5 Simulation Results Of Double Precision Floating

Point Multiplier

Figure 1.6 Simulation Results Of Double Precision Floating

Point Multiplier(Hexadecimal)

 Table Of Comparison

Device parameter Our Work

Double Precision

Addanki,

Tilak,Prasad[1]

Double Precision

No Of LUTs 599 648

Delay 9.251ns

VII. CONCLUSION AND FUTURE SCOPE

The double precision floating point multiplier supports the

IEEE-754 binary interchange format, targeted on a Xilinx

Virtex-6 xc6vlx75t-3ff484 FPGA. The design achieved with

minimum dealy 9.251 and an area of 599 slices. The

implemented design is verified with double precision floating

point multiplier [6]. this double precision floating point

multiplier uses a breakdown technique that reduced the area

compared to single precession. This design handles the

overflow, underflow, and normalization rounding mode

Synthesis of area Optimized 64 Bit Double Precision Floating Point Multiplier Using VHDL

 133 www.erpublication.org

VIII. FUTURE SCOPE

• Speed can improved using advanced algorithm like

BREAKDOWN TECHNIQUE, BOOTH, ARRAY,

DADDA, Algorithm etc.

• ALU Can be designed for DSP Applications.

REFERENCE

[1.] Addanki Puma Rameshl, A. V. N. Tilak2, A.M.Prasad “ An FPGA

Based High Speed IEEE-754 Double Precision Floating Point

Multiplier using Verilog.” Emerging Trends in VLSI, Embedded

System, Nano Electronics and Telecommunication System (ICEVENT),

IEEE International Conference on Print ISBN: 978-1-4673-5300-7

January 2013.

[2.]R Dhanabal, Ushasree G, Dr Sarat kumar sahoo “ VLSI Implementation

of a High Speed Single Precision Floating Point Unit Using Verilog”

Proceedings of 2013 IEEE Conference on Information and

Communication Technologies (ICT 2013) ISSN 978-1-4673-5758

2013.

[3.] R. Sai Siva Teja1, A. Madhusudhan “ FPGA Implementation of

Low-Area Floating Point Multiplier Using Vedic Mathematics”

International Journal of Emerging Technology and Advance

Engineering ISSN 2250-2459, ISO 9001:2008 Certified Journal,

Volume 3, Issue 12, December 2013.

[4.] Shaifali, Sakshi, “FPGA Design of Pipelined 32-bit Floating Point

Multiplier” IJCEM International Journal of Computational Engineering

& Management, Vol. 16 Issue 5, ISSN (Online): 2230-7893 September

2013.

[5.] Anurag Sharma “BIST Architecture and Implementation of 64-Bit

Double Precision Floating Point Multiplier Using VHDL” International

Journal of Scientific Engineering and Technology ISSN : 2277-1581

Volume No.2, Issue No.8, pp : 776-779 1 Aug. 2013.

[6.] Manish Kumar Jaiswal Ray C.C. Cheung, “Area-Efficient Architectures

for Large Integer and Quadruple Precision Floating Point Multipliers”

2012 IEEE 20th International Symposium on Field-Programmable

Custom Computing Machines. ISSN 978-0-7695-4699 2012.

[7.] Addanki Purna Ramesh, Rajesh Pattimi, “High Speed Double Precision

Floating Point Multiplier” International Journal of Advanced Research

in Computer and Communication Engineering Vol. 1, Issue 9 ISSN

(Print) : 2319-5940 ISSN (Online) : 2278-102 , November 2011.

[8.] Geetanjali Wasson, “IEEE-754 compliant Algorithms for Fast

Multiplication of Double Precision Floating Point Numbers”

International Journal of Research in Computer Science Volume 1 Issue

1pp. 1-7 ISSN 2249-8257 2011.

[9.] Mohamed Al-Ashrafy, Ashraf Salem, Wagdy Anis, “An Efficient

Implementation of Floating Point Multiplier” IEEE ISSN

978-1-4577-0069 2011

