

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 515 www.erpublication.org



Abstract— In distributed algorithms, the pieces of the

algorithm are run concurrently and independently in different

processes over the distributed systems. Deadlocks are very

thorny to detect in distributed systems. This is so because no site has

precise knowledge about the system, and each inter-site

communication involves a finite and unpredictable delay.

Furthermore in distributed systems, depending on the applications,

processes make requests according to different resource model such

as Single Resource Model, AND Model, OR Model, AND-OR

Model, P out-of Q Model (generalized model) and Unrestricted

Model.

Index Terms—AND-OR Model, Q Model,OR Model

I. INTRODUCTION

 The available generalized deadlock detection algorithms are

grouped into two categories namely Centralized Algorithms and

Distributed Algorithms. In Centralized algorithms, the global

state of the system is preserved at the single site, whereas in the

Distributed algorithms, the information needs to determine a

deadlock is maintained across multiple sites. But, both kinds of

algorithms have a few precincts. Distributed algorithms have

required additional round of messages for resolving deadlocks,

whereas Centralized algorithms have suffered with single point

of failure, large communicational overhead, and congestion of

communication links near the control site and local

computational complexity. To overcome those problems, the

requirement for novel and better generalized deadlock detection

algorithm is apparent Hence, all processes have equal amount of

information, and bear equal responsibility to take the final

decision. However, a single site needs to have enough memory

space and processing power in the centralized algorithms. So,

the centralized algorithms are resource intensive. Moreover, the

distributed algorithms are more reliable than the centralized

algorithms due to the absence of single point of failure. Also,

they are easily scalable.

II. SYSTEM MODEL AND PROBLEM

CHARACTERIZATION

The system consists of n processes, where each has unique

identity. The processes are communicating through a logical

communication channel by message passing. There is no

shared memory in the system. The messages are delivered at

the destination in the same order as sent by the sender, with

Manuscript received April 24, 2015.

 Mamta Mishra, College: Azad Institute Of Engineering & Techonology

Miss. Madhulika Sharma, Designation : H.O.D Of C.Se, College: Azad

Institute Of Engineering & Techonology

arbitrary but finite delay. The messages are neither lost nor

duplicated and the entire system is fault-free. The events in

the system are classified into internal and external events,

and they are time stamped using logical clock. They are

further classified into computation events and control events.

The computation event triggers the computational messages

such as DEMAND, RESPONSE, CANCEL and ACKN due

to the execution of applications. Whereas, the control event

generates the control messages including INVOKE and

STATUS as a result of the execution of deadlock detection

algorithm.

III. DESCRIPTION OF THE ALGORITHM

Whenever a process i blocks on a pi out-of qi demands, it

initiates the deadlock detection algorithm. A process i, called

originator, records the consistent snapshot of distributed wait

for graph by propagating the INVOKE messages along the

outgoing edges in the wait for graph. When the replies are

propagated backwards to the originator, the algorithm

reduces the snapshot to determine a deadlock. The proposed

algorithm follows the method of the algorithm proposed by

Kshemkalyani and Singhal (1994) for handling concurrent

executions. According to the method, the algorithm assigns a

unique priority to each instance based on the originator’s

identifier, and the time at which it was blocked. It supports

the execution of higher priority instance and suspends the

execution of lower priority instances in the conflicting

processes. Hence, each originator maintains its own snapshot

to detect a deadlock. For simplicity, this section describes the

single instance execution of proposed algorithm.

IV. EXPLANATION OF THE ALGORITHM

When process i wants to find out whether it is deadlocked, it

sends a INVOKE(i,i) message to all its successors (outi). The

first parameter of the INVOKE message is id of the process

that propagates the message and the second parameter is the

id of the originator. When process j receives the INVOKE

message from process i, it performs one of the following

actions.

i) If it is the first INVOKE message and process j is blocked,

it sets its fatherj to i and sends the INVOKE(j,originator)

message to all the processes in outj.

ii) If it has already received a INVOKE message (i.e, fatherj
≠ udef), it includes the id of i in the set inj. It also reduces

mj by one (mj = 0 implies that the process j receives the

INVOKE message from all its successors).

iii) If process j is active, it sends STATUS(originator, j, true,

φ, φ) to p ro cess i. The first parameter of the STATUS

message is the id of the originator. The second and third

parameter represents the id and the state of the process that

An Effective Methodology for Deadlock Detection

Mamta Mishra, Miss. Madhulika Sharma

An Effective Methodology For Deadlock Detection

 516 www.erpublication.org

sends the message respectively. The fourth parameter is the

id of the process that would be a victim in case of deadlock

and fifth parameter is the number of predecessors of a

process victim. Since process j is active, it can not be a

victim. Therefore, the fourth and fifth parameter value is set

as φ in the message.

iv) If process j receives the INVOKE message through a

phantom edge (i.e, i∉INj), it sends a STATUS(i, j, true, φ, φ)

message immediately to process i.

Whenever process i receives the STATUS message, it

reduces ni (Initally, ni=|OUTi|) by one. Once it receives the

STATUS message from all its successors (i.e, ni=0), it

evaluates its unblocking condition (fi). If fi is evaluated as

true, it sends the STATUS message to its predecessors

without changing the victim and |invictim| in the message.

Otherwise, it updates the fourth and fifth parameter of the

message by comparing number of its predecessors (|ini|) with

|invictim|. If |ini| ≥ |invictim|, it sets process i as victim and

sends STATUS(originator, i, false, i, |ini|) to its

predecessors. Else, it sends STATUS (originator, i, false,

victim, |invictim|) to its predecessors.

In some cases, process i is waiting to receive the STATUS

message from its own predecessor j in response to its

INVOKE message (i.e, when j∈ini ∧ j∈outi) for determining

its state. In such cases, process i can not send the STATUS

message to its predecessors including the process j. This

problem is resolved as follows. When process i receives the

STATUS message, it reduces ni by one. In addition, it counts

the number of processes that act as both predecessor and

successor (loop). Therefore, it attempts to simplify its

unblocking condition (fi) at the time it has received ni–loop

STATUS messages. It then sends STATUS message to its

predecessors. This will ensure that any process that is

reachable from the originator does not wait indefinitely to

determine its state.

After receiving the STATUS message from all its immediate

successors, the originator evaluates its unblocking condition.

If the unblocking condition of the originator is not evaluated

as true, the algorithm declares deadlock. In that case, the

originator sends ABANDON message to a process victim

directly to resolve it.

V. EXAMPLE EXECUTION

This section illustrates the working principle of proposed

algorithm with the help of an example shown in Figure 1. Let

us consider the distributed wait for graph that spans six

processes labeled P1 to P6. Assume that, process P1 initiates

the deadlock detection algorithm and the messages are

propagated in such a way to induce a Breadth First Search

(BFS) spanning Tree. All the processes except P6 are

blocked. The unblocking conditions of all blocked processes

are given as follows: F1 = (P2 ∧ P3), F2 = (P4 ∧ P5)∨ P6,

F3 = P5, F4 = P5∨ P6 and F5 = P3∧ P6.

 Figure 1 The Distributed wait for graph

Figure 2 shows the Directed Spanning Tree induced by the

execution of the proposed algorithm where solid lines

represent the tree edges and dotted lines represent non-tree

edges.

Figure 2 The Directed Spanning Tree induced by SDRA

When the originator invokes the algorithm, it diffuses the

INVOKE messages across the wait for graph. Figure 3

shows the propagation of INVOKE message in the

distributed wait for graph by the algorithm.

Figure 3 Propagation of INVOKE messages in SDRA

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 517 www.erpublication.org

The stepwise execution of SDRA algorithm is given below.

Assume that

Process P1 initiates the execution.

1. Process P1 sends the INVOKE(P1, P1) message to

processes P2 and P3 respectively.

2. When process P2 receives the INVOKE message from a

process P1, it propagates the INVOKE(P2, P1) message

to processes P4, P5 and P6 respectively.

3. When process P3 receives the INVOKE message from a

process P1, it sends INVOKE(P3, P1) message to P5.

4. When process P4 receives the INVOKE message from a

process P2, it sends INVOKE(P4, P1) message to its

successors P5 and P6 respectively.

5. When process P5 receives the INVOKE message from

process P2, it sends INVOKE(P5, P1) message to its own

successors P3 and P6 respectively.

6. When an active process P6 receives the INVOKE

message from a process P2, it sends STATUS(P1,

P6,true, φ, φ) to process P2.

7. When process P5 receives the INVOKE message from a

process P3 through a non-tree edge, it does not propagate

the INVOKE message.

8. When an active process P6 receives the INVOKE

message from a process P4, it sends STATUS(P1,

P6,true, φ, φ) to process P4.

9. When process P3 receives the INVOKE message from a

process P5 through a non-tree edge, it does not respond to

the message.

10. When an active process P6 receives the INVOKE

message from a process P5, it sends STATUS(P1,

P6,true, φ, φ) to process P5.

11. When process P5 receives the INVOKE message from

process P6, it sends STATUS(P1, P5, false, P5, 2) to

processes P2, P3 and P4 respectively.

12. When process P2 receives the STATUS message from a

process P5, it waits for the arrival of STATUS message

from its successor P4.

13. When process P3 receives the STATUS message from a

process P5, it sends STATUS(P1, P3, false, P3, 2) to

process P1.

14. When process P2 receives the STATUS message from a

process P4, it sends STATUS(P1, P2, true, P5, 2) to

process P1.

VI. PERFORMANCE ANALYSIS SDRA

This section compares the performance of proposed

algorithm in Chapter 3, with that of Bracha and Toueg’s

algorithm and Kshemkalyani and Singhal’s algorithm

(1999). The reason behind the selection of those two

particular algorithms is that the process’s data structure of

those two algorithms is same as in SDRA. Also, all the

algorithms have detected the generalized deadlock in a

distributed manner.

Figure 4 Comparison of Deadlock Duration of three

Decentralized algorithms

Figure 4.1 shows the deadlock duration plotted as a function

of the MPL of the system. As shown in the Figure, mean

deadlock detection duration resulting from SDRA is less than

that from Bracha and Toueg’s algorithm. It is observed that

deadlock duration of Kshemkalyani and Singhal’s algorithm

and SDRA is almost same for higher MPL values, which is

consistent with complexity comparison presented in Table 1.

It is also observed that the deadlock detection duration

increases with MPL until the number of processes reaches

30, and then tapers to flat. The reason behind this is due to the

increase of simply blocked nodes with MPL.

 Figure 5 Comparison of Message traffic of three

Decentralized algorithms

Figure 5 shows the mean number of deadlock detection

messages generated per algorithm execution with varying

multiprogramming levels. As shown in the Figure, Bracha

and Toueg’s algorithm passes 1.5 times more messages than

SDRA for higher MPL values. It is observed that SDRA and

Kshemkalyani and Singhal’s algorithm have required almost

same number of messages to detect deadlocks according to

the congruence with the theoretical expectation as in Table 1

Figure 6 Comparison of Message Size of three

Decentralized algorithms

An Effective Methodology For Deadlock Detection

 518 www.erpublication.org

Figure 6 shows the mean length of deadlock detection

messages in terms of number of node identifiers for each

algorithm. It is observed that, as the MPL is increased in the

system, the message length of Kshemkalyani and Singhal’s

algorithm is also increased. However, the message length of

proposed and Bracha and Toueg’s algorithm is a constant. If

the system is in deadlock, the Bracha and Toueg’s algorithm

aborts the initiator to resolve a deadlock. However, it might

not resolve all deadlocks reachable from the initiator. On the

contrary, the Kshemkalyani and Singhal’s algorithm selects a

victim by invoking additional procedure as the centralized

algorithms. Since the initiator of proposed algorithm

identifies an appropriate victim without invoking any

additional procedure, the deadlock resolution time is very

less in proposed algorithm as compared to the Kshemkalyani

and Singhal’s algorithm. It is observed that a deadlocked

process having highest predecessor is aborted and it is more

likely that abortion of such a process might resolve a

deadlock.

Table 1 Performance Comparison of Distributed

algorithms forDetecting Generalized Deadlocks

Algorithms

Compariso

n Factor

Wang.e

t al’s

algorith

m

(1990)

Kshemkal

yani and

Singhal’s

algorithm

(1994)

Kshemkalya

ni and

Singhal’s

algorithm

(1999)

SDRA

Deadlock
3d+1 2d 2d+2 2d

Duration

Message
6e 4e-2n+2l 2e 2e

Complexity

Message
O(1) O(1) O(e) O(1)

Size

Deadlock No

Scheme

e

Messages
No Scheme

1

Resolution Message

VII. CONCLUSION

A new distributed deadlock detection algorithm namely

SDRA is presented. In this algorithm, the probes are

propagated along through the edges of wait for graph and the

replies are sent backwards towards the originator. The

reducibility of a blocked process is decided once it has

received the STATUS messages from all its descendants. If

the originator is not reduced at the end of termination, the

algorithm declares a deadlock. The correctness of proposed

SDRA is formally proved. It is shown that the message

complexity of 2e and time complexity of 2d is better or equal

to the existing algorithms. The notable improvement of this

algorithm is that it significantly reduces the message length

without using any explicit techniques. Also, it victimizes a

single process to resolve deadlock and eliminates the

message overhead associated with deadlock resolution as

compared to the existing distributed algorithms. However,

the proposed SDRA requires 2d time units to detect

deadlocks like the existing algorithms as opposed to

centralized generalized deadlock detection algorithms.

 REFERENCES

[1] Ashfield, B., Deugo, D., Oppacher, F. and White, T. “Distributed

Deadlock Detection in Mobile Agent Systems”, Proceedings of the

International Conference on Industrial and Engineering Applications

of Artificial Intelligence and Expert Systems, pp. 146-156, 2002.

[2] Bhalla, S. and Hasegawa, M. ”Automatic Detection of Multi-Level

Deadlocks in Distributed Transaction Management Systems”,

Proceedings of the International Conference on Parallel Processing

Workshops, pp. 297-304, 2003.

[3] Bukhres, O., “Performance Comparison of Distributed Deadlock

Detection Algorithms”, Proceedings of IEEE Eighth International

Conference on Data Engineering, pp. 210-217, 1992.

[4] Cao, J., Zhou, J., Zhu, W., Chen, D. And Lu, J. ”A Mobile Agent

Enabled Approach for Distributed Deadlock Detection”,

Proceedings of the Grid and Cooperative Computing, pp. 535-542,

2004.

[5] Cheng, X., Yang, X. and Jin, F. “An Agent-Based Deadlock

Detection/Resolution Algorithm for the AND Model”, Proceedings

og the Sixth Conference on Parallel and Distributed Computing

Applications and Technologies, pp. 759-761, 2005.

[6] Geetha, V. and Sreenath, N. ”Fault Informant Distributed Deadlock

Detection Using Colored Probes’, Proceedings of the Computer

Networks and Information Technologies, Communications in

Computer and Information Science, Vol. 142, No. 1, pp.128-132,

2011.

[7] Hashemzadeh, M., Farajzadeh, N. and Haghighat, A.T. “Optimal

detection and resolution of distributed deadlocks in the generalized

model”, Proceedings of the Fourteen Euromicro International

Conference on Parallel, Distributed, and Network-Based

Processing, pp. 133-136, 2006.

