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 

Abstract— In this paper, the effects slip on the peristaltic 

flow of a Carreau fluid through a porous medium in a two 

dimensional channel under the assumptions of low Reynolds 

number and long wavelength is investigated. The flow is 

investigated in a wave frame of reference moving with velocity 

of the wave. The perturbation series in the Weissenberg number 

was used to obtain explicit forms for velocity field, pressure 

gradient per one wavelength. The effects of various pertinent 

parameters on the pressure gradient and pumping 

characteristics are discussed through graphs in detail. 

  

Index Terms—Carreau fluid; Darcy number; MHD; Slip 

effects 

I. INTRODUCTION 

Peristalsis is a series of wave-like muscle contractions 

that moves food to different processing stations in the 

digestive tract. This principle is used in designing the roller 

pumps which are useful in pumping machinery. For instance 

biomechanical pumps are fabricated to save blood or similar 

fluids from any possible contaminations arising out of contact 

with the pumping machinery while pumping the fluid. Since 

many physiological fluids behave like non-Newtonian in 

nature. Many authors have been studied the analysis of the 

mechanisms for peristaltic transport of non-Newtonian fluids 

[1-4]. Carreau fluid model is a four parameter model. The 

peristaltic transport of Carreau fluid by considering different 

flow models were developed by [5-8].   

Specifically, the non-Newtonian fluids in the presence of 

a magnetic field are very useful in magneto-therapy. The 

controlled application of low intensity and frequency pulsing 

magnetic fields modify the cell and tissue behavior. 

Moreover, the non-invasive radiological test that uses a 

magnetic field (not radiation) to evaluate organs in abdomen 

prior to surgery in the small intestine (but not always). Hence 

magnetically susceptible of chyme can be satisfied from the 

heat generated by magnetic field or the ions contained in the 

chyme. The peristaltic flows of magneto hydrodynamic 

(MHD) fluid have been studied by [9-12].  

The investigations of blood flow through arteries are of 

considerable importance in various cardiovascular diseases 

particularly arteriosclerosis. In some pathological situations, 

the distribution of fatty cholesterol and artery clogging blood 

clots in the lumen of coronary artery can be considered as 

equivalent to a porous medium. Reference [13] has studied 
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the peristaltic mechanism of a Newtonian fluid through a 

porous medium. Reference [14] has investigated the MHD 

peristaltic flow of a porous medium in an asymmetric channel 

with heat transfer. Reference [15] have studied the Peristaltic 

motion of a Carreau fluid through a porous medium in a 

channel under the effect of a magnetic field.  

Also flows with slip would be use full for problems in 

engineering, for example flows through pipe in which 

chemical reactions occur at the walls, two phase flow in 

porous slider bearings. The initial work on slip boundary 

condition on the peristaltic flow of a Maxwell fluid in a 

channel was discussed by [16]. The effects of slip and non- 

Newtonian parameters on the peristaltic flow of a third grade 

fluid in a circular cylindrical tube were investigated by [17]. 

Effects of slip and induced magnetic field on the peristaltic 

flow of pseudoplastic fluid were analyzed by [18]. Recently, 

[19] have investigated the slip effects on the peristaltic 

transport of a Jeffrey fluid through a porous medium in an 

asymmetric channel under the effect magnetic field.  

In view of these, we studied the effects slip on the 

peristaltic flow of a Carreau fluid through a porous medium in 

a two dimensional channel under the assumptions of low 

Reynolds number and long wavelength. The flow is 

investigated in a wave frame of reference moving with 

velocity of the wave. The perturbation series in the 

Weissenberg number ( 1We  ) was used to obtain explicit 

forms for velocity field, pressure gradient per one 

wavelength. The effects of various pertinent parameters on 

the pressure gradient and pumping characteristics are 

discussed through graphs in detail.   

II. MATHEMATICAL FORMULATION 

We consider the flow of an incompressible Carreau fluid 

through a porous medium in a two dimensional planar channel 

with flexible walls. It is assumed that the progressive 

sinusoidal waves propagate along the walls of the channel. 

The fluid subjected to a constant transverse magnetic field. 

Induced magnetic field, external electric field, electric field 

due to polarization of charges, heat due to viscous and joule 

dissipation are neglected. The equation of the channel wall is 

given by 

 
2

( , ) cos ( )Y H X t a b X ct



    ,       (1) 

where , ,b c  and a are amplitude, wave length, phase speed 

of the wave, mean-half width of the channel respectively, t is 

the time and  ,X Y  are the Cartesian co-ordinates. Fig. 1 

represents the physical model of the channel. 
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Fig. 1. The physical model 

We introduce a wave frame of reference ( , )x y  moving 

with the velocity  c in which the motion becomes independent 

of time when the channel length is an integral multiple of the 

wave length and the pressure difference at the ends of the 

channel is a constant. The transformation from the fixed frame 

of reference  ,X Y to the wave frame of reference ( , )x y is 

given by  

,   ,   ,   ,   ( ) ( , )x X ct y Y u U c v V p x P X t       . (2) 

where ( , )u v  and ( , )U V  are the velocity components, p  

and P  are pressures in the wave and fixed frames of 

reference respectively. 

The constitute equation for a Carreau fluid (given in [20]) 

is 

    
1

2 2

0 1

n

     



 

 
      

  

      (3) 

where   is the extra stress tensor,   is the infinite shear rate 

viscosity, 0  is the zero shear rate viscosity,   is the time 

constant, n is the dimensionless power-law index and   is 

defined as  

1 1

2 2
ij ji

i j

                (4) 

here   is the second invariant of strain-rate tensor. We 

consider in the constitutive equation    (3) the case for which 

0   and so we can write  

  
1

2 2

0 1

n

   



    .            (5) 

The Carreau model reduces to Newtonian model for 1n   

(or) 0.   

The equations governing the flow in the wave frame of 

reference are 

0
u v

x y

 
 

 
                (6) 
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1
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                     (7) 

1xy yyv v p
u v v

x y y x y k

 


    
      

     
      (8) 

where   is the density, k  is the permeability of the porous 

medium,   is the electrical conductivity and 0B  is constant 

transverse magnetic field. 

Introducing the non-dimensional variable defined by 
2

0
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
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2
,   ,   ,

c a q k
We q Da

a c ac a





           (9) 

where Re  is the Reynolds number and is the wave number, 

into the equations (6) – (8) (dropping bars), we get 

0
u v

x y

 
 

 
                 (10) 

2 21
Re ( 1)

yxxxu u p
u v M u

x y x x y Da


 

     
          

       

                      (11) 
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where 
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, 

and 
0

0

eM a H





  is the Hartman number and 
2

k
Da

a
  

is the Darcy number.  

Under lubrication approach, neglecting the terms of 

order   and Re, we get 
2

2 21
1 ( 1)

2
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    (13) 

0
p

y





                   (14)  

here 2 1
N M

Da
   . 

The corresponding boundary conditions in wave frame of 

reference are given by 
3

21
1
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u n u
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
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 at y h ,    (15) 

0
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


   at  0y  .              (16) 
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From Equations (13)  and (14) it is seen that p  is 

independent of y .  So that (13) can be rewritten as  

2

2 21
1 ( 1)

2

dp n u u
We N u

dx y y y

        
       
        

, (17)  

The volume flow rate q
 
in a wave frame of reference is 

given by 

0

h

q udy  .                 (18) 

The instantaneous flux ( , )Q X t  in the laboratory frame is 

0 0

( , ) ( 1)

h h

Q x t udy u dy q h      .       (19) 

The time average flux over one period T
c

 
 
 

 of the 

peristaltic wave is 
1

0 0

1
( ) 1

T

Q Qdt q h dx q
T

      .        (20) 

III. SOLUTION 

 

Since Eq. (2.17) is non-linear differential equation, it is 

not possible to obtain closed form solution. So, we seek a 

perturbation solution by considering Wiessenberg number 

We  as a small parameter. For perturbation solution, we 

expand ,u q and p  as  
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2 40 1 ( )

dp dpdp
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dx dx dx
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 Substituting these equations in (17) and in boundary 

conditions (15) and (16), we get 

3.1 System of order 0We  
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The boundary conditions are 

0
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3.2 System of order 2We  
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The boundary conditions are 
3
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3.3. Solution for system of order 0We  
 

Solving Eq. (24) and then using the boundary condition 

equations (25) and (26), we get 

 

 0

0 12

1

1
cosh 1

dp
u Ny c

dxc N
            (30) 

where 1 cosh sinhc Nh Nh  .  

and the volume flow rate 0q  is given by    
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From Eq. (3.11), we get 
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3.4 Solution for system of order 2We  
 

Solving Eq. (3.7) using the Eq. (3.10) and the boundary 

conditions (3.8) and (3.9), we get 
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where 2 cosh3 4 sinhc Nh Nh Nh  , 

2
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3

4
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and the volume flow rate 1q  is given by    
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where 

6 5 1 1 13 sinh sinh3 12 cosh 12 sinhc c Nh c Nh Nhc Nh c Nh   

. 

From Eq. (3.14) and Eq. (3.12), we have 
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Substituting from Equations (32) and (35) into (23)  and 

using the relation 20 1
dp dpdp

We
dx dx dx

   and neglecting terms 

greater than  2O We , we get 
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  (36) 

 

The dimensionless pressure rise per one wavelength in 

the wave frame is defined as 

 

 
1

0

dp
p dx

dx
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Fig. 2. The variation of axial pressure gradient 
dp

dx
 with We  for 0.6  ,  

0.1Da  ,  1M  , 0.1  and 0.398n  .     

IV. RESULTS AND DISCUSSIONS 

In order to see the effects of various parameters like 

Wiessenberg number We ,  power-law index n , slip 

parameter  , Hartmann number M , Darcy number Da , 

amplitude ratio   on the axial pressure gradient 
dp

dx
  we 

plotted Figs. 2-7. From Fig. 2, it is found that the axial 

pressure gradient 
dp

dx
decreases with increasing We . From 

Fig. 3, it is noticed that the axial pressure gradient 

dp

dx
increases with an increase in n . From Fig. 4, it is observed 

that the axial pressure gradient 
dp

dx
decreases with 

increasing  . From Fig. 5, it is found that the axial pressure 

gradient 
dp

dx
increases on increasing M . From Fig. 6, it is 

noted that the axial pressure gradient 
dp

dx
decreases with an 

increase in Da . From Fig. 7 it is noticed that, the axial 

pressure gradient 
dp

dx
increases with increasing  .  

In order to see the effects of various parameters like 

Wiessenberg number We  , power-law index n , slip 

parameter  , Hartmann number M , Darcy number Da , 

amplitude ratio   on the the time-averaged volume flow rate 

Q   we plotted Figs. 8-13. From Fig. 8, it is observed that the 

time-averaged volume flow rate Q  decreases with increasing 

We  in the pumping region  0p  , while it increases with 

increasing We  in both the free pumping  0p    and 

co-pumping  0p   regions. From Fig. 9, it is found that, 

the time-averaged volume flow rate Q  increases with 

increasing n  in the pumping region, while it decreases with 

increasing n  in both the free pumping and co pumping 

regions. Moreover, it is seen that the pumping is less for 

Carreau fluid
 
than that of Newtonian fluid  1n  . From 

Fig. 10, it is found that the time-averaged volume flow rate Q  

decreases with increasing   in both the pumping and free 

pumping regions, while it increases with increasing   in the 

co-pumping region for chosen  0p  . From Fig. 11, it is 

observed that the time-averaged volume flow rate Q  

increases with increasing M  in the pumping region, while it 

decreases with increasing M  in both the free pumping and co 

pumping regions. Fig. 12, it is found that the time-averaged 

volume flow rate Q  decreases with increasing Da  in the 

pumping region, while it increases with increasing Da  in 

both the free pumping and co pumping regions. From Fig. 13, 

it is noted that, the time-averaged volume flow rate Q  

increases with increasing   in both the pumping and free 

pumping regions, while it decreases with increasing   in the 

co- pumping region for chosen  0p  .   

 

 

Fig. 3. The variation of axial pressure gradient 
dp

dx
 with n  for 0.6  ,  

0.1Da  ,  1M  , 0.1  and 0.1We  .       

V. CONCLUSION 

In this paper, we studied the influence of slip on the 

peristaltic flow of a Carreau fluid through a porous medium in 

a planar channel with the effect of a magnetic field under the 

assumptions of long wavelength and low-Reynolds number 

assumptions. It is observed that, the axial pressure gradient 

and time averaged flux in the pumping region increases with 

increasing ,n M  and  , whereas they decreases with 

increasing We  ,   and Da .     

 

 

Fig. 4. The variation of axial pressure gradient 
dp

dx
 with   for 0.6  , 

0.1Da  ,   1M  , 0.1We  and 0.398n  .    
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Fig. 5. The variation of axial pressure gradient 
dp

dx
 with M  for 0.6  , 

0.1Da  , 0.1We  , 0.1  and 0.398n  .     

 

 

Fig. 6. The variation of axial pressure gradient 
dp

dx
 with Da  for 0.6  , 

1M  , 0.1We  , 0.1  and 0.398n  .     

 

 

Fig. 7. The variation of axial pressure gradient 
dp

dx
 with   for 0.1We  ,  

1M  , 0.1  and 0.398n  .     

 

 
Fig. 8 The variation of pressure rise p  with time-averaged volume flow 

  rate Q  for different values of We  with 0.6  , 1M  , 0.1   ,  

0.1Da   and 0.398n  .     

 

 
Fig. 9. The variation of pressure rise p  with time-averaged volume flow 

 rate Q  for different values of n  with 0.6  , 1M  , 0.1, 
 

0.1Da   and 0.1We  .     

 

 
Fig. 10.  The variation of pressure rise p  with time-averaged volume flow 

rate Q  for different values of   with 0.6  , 1M  , 0.1We    

and 0.398n  .     
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Fig. 11. The variation of pressure rise p  with time-averaged volume flow 

rate Q  for different values of M  with 0.6  , 0.1We  , 0.1  , 

0.1Da     and 0.398n  .     

 
Fig. 12. The variation of pressure rise p  with time-averaged volume flow 

rate Q  for different values of Da  with 0.6  , 0.1We  , 0.1,    

1M     and 0.398n  .     

 
Fig. 13. The variation of pressure rise p  with time-averaged volume flow 

rate Q  for different values of We  with 0.6  , 1M  , 

0.1,  0.1Da   and 0.4n  .     
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