

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 6 www.erpublication.org



Abstract— Software quality is one of the most pressing

concerns for nearly all software developing companies. At the

same time, software companies also seek to shorten their release

cycles to meet market demands while maintaining their product

quality. Identifying problematic code areas becomes more and

more important. Defect prediction models became popular in

recent years and many different code and process metrics have

been studied. There has been minimal effort relating test

executions during development with defect likelihood. This is

surprising as test executions capture the stability and quality of

a program during the development process. This paper presents

an exploratory study investigating what is software quality, why

is it important and how it can be maintained.

Index Terms—Software quality, RAM, code characteristics.

I. SOFTWARE QUALITY

The quality of software is assessed by a number of

variables. These variables can be divided into external and

internal quality criteria. External quality is what a user

experiences when running the software in its operational

mode. Internal quality refers to aspects that are

code-dependent, and that are not visible to the end-user.

External quality is critical to the user, while internal quality is

meaningful to the developer only. By definition the internal

quality (code characteristics) is a concern to the developer

only, while all the external quality aspects (coming from using

the software) are critical to the end user. Hoawever the

developer has also interests in performances (speed, space,

network usage) and determinism, because they make testing

the software easier. Developers treat ease-of-use,

back-compatibility, security, and power consumption as

requirements.

It is important to consider how difficult it is to measure

each of these criteria. It can be difficult because there is no

simple variable to look at, or because the measurement

process is costly, or because it requires a complex

infrastructure. For instance, speed has an objective

measurement that is easy to measure. Power consumption has

a simple measurement, but it is complex to measure. Security

is difficult and costly to estimate.

Features: This is the very reason for the software to be

written: to provide a service. By feature we really mean the

output produced by the software –e.g., a numerical result, a

string, a screen shot, a web page, an audio, etc–, regardless of

the performances (speed, memory).

Speed: How quickly does the application provide the

service? The user experiences the actual time elapsed

between the moment she request the service, and the moment

the service is delivered. The real elapsed time, or wall time, is

the sum of the CPU time, system time, and network latency.

Manuscript received March 30, 2015.

Mrs. Pinki is pursuing her M.Tech Degree in Computer Science &

Engineering from Sat Kabir Institute Of Technology & Management

Bahadurgarh.

Thus the developer should not only focus on the CPU time

(how much time the CPU actually spends on executing the

program). The CPU time can easily be overshadowed by disk

access (a write on the disk is very costly), swapping (due to an

excessive virtual memory size), or time spent by the network

(latency issue, or too many round trips).

Space: How much RAM and disk space is taken by the

application? The aggregate numbers are important –peak

memory, virtual memory size, etc. But even more so, how

often do we move data that triggers a CPU cache miss or a

disk write, has a dominant impact on the speed of the

application. A mediocre data design can lead to very poor

performances.

Network usage: It is a matter of bandwidth and latency.

Mismanaging sockets and channels can lead to unnecessary

extra time spent in opening and closing sockets, handshakes,

and round trips. As for memory, caching techniques can be

used to reduce consuming network resources.

Stability: How often does one need to patch the software

to fix problems? For the user, this is an inconvenience. For the

developer, it means that the code is fragile and might benefit

from better testing or partial rewrite.

Robustness: How often does the application stale, freeze,

or crash? How tolerant is it to extreme conditions –limited

CPU and memory/disk/network resources, corner cases,

system failure or unresponsive 3
rd

-party resources? This

aspect is strongly related to testability and coverage.

Ease-of-use: It can be a very subjective factor, hard to

quantify. It includes user documentation, clarity of the error

message, management of exceptions, and recovery after

failure.

Determinism: Also known as repeatability: does the

program produce the very same result given the same input?

There are many reasons for which a program can exhibit a

non-repeatable behavior. A non-repeatable behavior is

confusing and frustrating for the user. This also makes the

program very difficult to test and debug. Repeatability is

strongly dependent on a good data model design.

Back-compatibility: Can a new version of the application

be used with an older version’s data? It is essential to the user,

because a new version should not require a costly migration of

the existing data.

Security: Who is authorized to access the data? Can the

data processed by the application be compromised? This is a

crucial aspect of many applications, and it is getting more and

more difficult to assess with the dissemination of mobile and

web-based software.

Power consumption: It is increasingly important with

mobile applications, as a program may have to consider how it

manages the device’s power producers and consumers

(battery, cores, wireless, screen, audio), and not to rely

entirely on the operating system.

Test coverage: What is the proportion of code that is

executed by some unit or regression test? This is measured by

the number of lines, number of functions, and number of

control branches that are exercised by the tests. Usually one

Software Quality

Mrs. Pinki

Software Quality

 7 www.erpublication.org

expects coverage of at least 85% for any moderately complex

application. In practice reaching high coverage can be

achieved only if testability is high, which has deep implication

on the architecture and development methodology.

Testability: An often overlooked or simply ignored

aspect of code development, testability is the ability to trigger

any specific line of code or branching condition. Highly

testable code requires a discipline of architecture and

development that is difficult to find. It very costly to fix

poorly testable software, as this requires major redesign. This

justifies major investment in software architecture, design,

and development methodologies.

Portability: Can the application run on 32 and 64 bits

machines? Should it run on a mobile phone? Does it run on

multiple OS (e.g., Windows, Linux, Mac OS-X, Solaris, iOS,

Android, RIM)? Does it run smoothly on all web browsers

(IE, Firefox, Chrome, Safari, Opera)?

Thread-safeness: Is a specific component thread-safe?

Can two threads collide on non-atomic operations? Can the

application get into a deadlock? As concurrency is still mostly

the result of a manual process (there no compiler that

automatically parallelizes the code), these questions are

critical to ensure the good functioning of a program, as well as

its performance –it is not rare to see the a program

running slower when two many threads are available, as the

cost of synchronization can become dominant.

Conciseness: Also known as compactness. Is there any

dead code, or duplicated code? Is the code shared and

factorized properly? A compact code usually means faster

compilation and smaller binary size. Also compactness

naturally leads to fewer bugs, because the number of bugs is

historically constant w.r.t. code size.

Maintainability: How easy it is to debug the code? How

fast is it to provide a fix? How quickly can a new developer

understand the code? Maintainability is a very important

aspect, quite difficult to quantify. Maintainability is increased

with good testability and flexible (abstract) design.

Documentation: This is a pretty subjective topic. Some

people claim that a separate documentation written in plain

English is necessary. Some others state that at least 30% of the

code should be comments. Some finally argue that the code

itself is the best documentation –the names of the types,

classes, functions and arguments, together with plenty of

assertions.

Legibility: Also known as readability. This is another

subjective topic. It is about how easy it is to read the code.

Guidelines are established to unify the style of the code, so

that a developer can easily read code written by another

developer. Code guidelines abound, and they go from a small

set of directives, to a full set of rules that specify every

syntactical aspect of the language.

Scalability: How easy it is to extend a feature? Or to add a

new one? Or to add extra cores, or increase the size of the

cluster the application runs on? Again, this is all about

software architecture and anticipating future needs.

Software quality is the result of the user experience. But

software quality should not and cannot be a reactive action to

external defects. Software quality is built from the ground up,

with design and development methodologies, and with a

special focus on testability, coverage, and flexibility.

Need of Software Quality: If you don’t focus on product

quality then:

• You tend to produce components with more (hidden)

defects, so

 • You have to spend more time fixing these (late), so

• You have little time for anything else, so

 • You produce poor quality software even though you put

huge amounts of effort into defect checking.

Thus quality is something that has to be considered

throughout the product lifecycle; it cannot be added in later.

 Thus it makes sense to focus on improving component

quality before testing, to catch difficult defects early.

II. SOFTWARE QUALITY MANAGEMENT

Software Quality Management simply stated comprises of

processes that ensure that the Software Project would reach its

goals. In other words the Software Project would meet the

clients expectations.

The key processes of Software Quality Management fall

into the following three categories:

1) Quality Planning

2) Quality Assurance

3) Quality Control

III. QUALITY PLANNING

Quality Planning is the most important step in Software

Quality Management. Proper planning ensures that the

remaining Quality processes make sense and achieve the

desired results. The starting point for the Planning process is

the standards followed by the Organization. This is expressed

in the Quality Policy and Documentation defining the

Organization-wide standards. Sometimes additional industry

standards relevant to the Software Project may be referred to

as needed. Using these as inputs the Standards for the specific

project are decided. The Scope of the effort is also clearly

defined.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 8 www.erpublication.org

IV. QUALITY ASSURANCE

The Input to the Quality Assurance Processes is the

Quality Plan created during Planning.

Quality Audits and various other techniques are used to

evaluate the performance of the project. This helps us to

ensure that the Project is following the Quality Management

Plan.

The tools and techniques used in the Planning Process

such as Design of Experiments, Cause and Effect Diagrams

may also be used here, as required.

V. QUALITY CONTROL

Following are the inputs to the Quality Control Process:

- Quality Management Plan.

- Quality Standards defined for the Project

- Actual Observations and Measurements of the Work done or

in Progress

The Quality Control Processes use various tools to study

the Work done. If the Work done is found unsatisfactory it

may be sent back to the development team for fixes. Changes

to the Development process may be done if necessary.

In a typical Software Development Life Cycle the

following steps are necessary for Quality Management:

1) Document the Requirements

2) Define and Document Quality Standards

3) Define and Document the Scope of Work

4) Document the Software Created and dependencies

5) Define and Document the Quality Management Plan

6) Define and Document the Test Strategy

7) Create and Document the Test Cases

8) Execute Test Cases and (log) Document the Results

9) Fix Defects and document the fixes

10) Quality Assurance audits the Documents and Test Logs

VI. CONCLUSION

A fixed software quality model is often helpful for

considering an overall understanding of software quality. In

practice, the relative importance of particular software

characteristics typically depends upon software domain,

product type, and intended usage. Thus, software

characteristics should be defined for, and used to guide the

development of, each product. Quality function deployment

provides a process for developing products based on

characteristics derived from user needs. This paper includes

the importance of software quality, the attributes of software

quality, what is the need of software quality and what is

software quality management.

VII. REFERENCES

[1] V. Basili, Briand, L., Melo, W., "A Validation of Object Oriented Design

Metrics as Quality Indicators", IEEE Transactions on Software

Engineering, 22(10), pp. 751- 761, 1996.

[2] V. Basili, G. Caldiera, and D. H. Rombach, "The Goal Question Metric

Paradigm," in Encyclopedia of Software Engineering, vol. 2: John

Wiley and Sons Inc., 1994, pp. 528-532.

[3] V. Basili, Shull, F.,Lanubile, F., "Building Knowledge through Families

of Experiments", IEEE Transactions on Software Engineering, 25(4),

pp. 456-473, 1999.

[4] S. Biyani, Santhanam, P., "Exploring defect data from development and

customer usage on software modules over multiple releases",

Proceedings of International Symposium on Software Reliability

Engineering, pp.316-320, 1998.

[5] L. C. Briand, Wuest, J., Ikonomovski, S., Lounis, H.,"Investigating

quality factors in object-oriented designs: an industrial case study",

Proceedings of International Conference on Software Engineering, pp.

345-354, 1999.

[6] Roger S. Pressman, Software Engineering – A Practitioners Approach,

Fifth Edition, McGraw –Hill, 2005.

[7] S. R. Chidamber, Kemerer, C.F., "A Metrics Suite for Object Oriented

Design", IEEE Transactions on Software Engineering, 20(6), pp.

476-493, 1994.

[8] Ian Sommerville, Software Engineering, Sixth Edition, Perason

Education,2001.

[9] T. DeMarco and T. Lister, Peopleware. New York: Dorset House

Publishers, 1977.

[10] T. M. Khoshgoftaar, Szabo, R.M., "Improving Code Churn Predictions

During the System Test and Maintenance Phases", Proceedings of IEEE

International Conference on Software Maintenance, pp.58-67, 1994.

[11] D. G. Kleinbaum, Kupper, L.L., Muller, K.E., Applied Regression

Analysis and Other Multivariable Methods. Boston: PWS-KENT

Publishing Company, 1987.

[12] T. J. McCabe, "A Complexity Measure", IEEE Transactions on

Software Engineering, 2(4), pp. 308- 320, 1976.

[13] A. Mockus, Fielding, R.T., Herbsleb, J., "Two case studies of open

source software development: Apache and Mozilla", ACM Transactions

on Software Engineering and Methodology, 11(3), pp. 309 - 346, 2002.

Mrs. Pinki is pursuing her M.Tech Degree in

Computer Science & Engineering from Sat Kabir Institute Of Technology &

Management Bahadurgarh (Affiliated to Maharishi Dayanand University

Of Science and Technology, Rohtak, Haryana (INDIA)). She received her

B.Tech. in Computer Science & Engineering from B.P.R . College of

Engineering, Gohana (Sonipat) (Affiliated to M.D.U. Rohtak) in 2009. Her

research interest includes Software Engineering Concepts and Computer

Networks

