

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 231 www.erpublication.org



Abstract— There is always an intention behind any task or

activity we do in our day to day life. This principle is also

applicable behind building as well as using a software system or

application. The stakeholders have some of their own intentions

to provide certain functionalities through software systems and

the users have their own intentions behind using the

functionalities. The 'Intent Driven Design' suggests focusing on

the intention of both, the stakeholders and the users.

Intent-driven development is an approach that simplifies and

standardizes the process of getting detailed technical

requirements from non-technical business decision makers so

you can develop more complete and consistent requirements as

well as design and implement it in such a way that you can keep

track of development as well as the usage and also make it more

close to end users.

 Index Terms—IDD, UI Designers

I. INTRODUCTION

Consider a software system which performs many

different types of tasks targeting various different kind of

users. Mostly it is seen that UI designers face challenges in

balancing between number of links at one page Vs minimum

number of clicks required to go from one page to another.

Many times, either all the links are dumped on Home page or

user has to be patient to navigate to the desired page as it will

take quite huge number of clicks. Dumping all links on one

page makes it conjusted and beautification of page becomes

quite a challenge. Otherwise, if user needs to click many

times to reach the desired page, after a certain time user starts

to think that he/she is going in wrong direction.

Software systems of this size generally also have quite

many notifications and putting them all in one page, either

makes one notification cycle too long for a user to see all the

notifications, or UI designer has to use multiple notification

bars. Another issue with multiple notification bars is, one or

two notification bars get all the attention and other

notification bars get neglected.

It becomes difficult for a new user to find the desired

screen and perform the necessary activities. Training

becomes mandatory which increases the cost of application

and with every new user the need for training stays same, but

quality of training decreases as organizations are in hurry to

make the new users billable or productive.

If stakeholders are looking for adding multiple

functionalities in current running software system, it

becomes even more difficult to manage as at the time of

original design, it was not forecasted. Therefore, some 'jugad'

has to be made. As the number of 'Jugads' increase,

maintainability[1] and modifiability of system decreases

exponentially. Use of IDD enables architects and developers

to create a room for new functionality anytime in the life of

system as well as increases modularity[2] of software system.

In 'Intent Driven Design', the architecture and development

team considers intentions of both ends, the stakeholders as

well as users.

Manuscript received March 20, 2015.

 Saurabh Dhupkar, Mumbai, India, +91 9619187377,.

During requirement gathering, architecture and development

team should first get to know the intention of stakeholders

behind providing certain functionality and later they should

group it in suitable user intentions.

 When the software system of this size is being developed,

following are the main issues faced -

1. Not all the stakeholders have common understanding

about functionalities.

2. With different visions and perceptions of different

stakeholders, priorities of functionalities differ.

3. Some of the functionalities added in requirements are

not clear to even the stakeholders.

4. Functionalities that are introduced in later stages of

life of software system create problems as the

original design may not be so futuristic that it will be

able to adapt the new functionality.

5. It becomes difficult for UI designers to trade-off

between no. of links at one page Vs minimum no. of

clicks to reach from any page to any other page.

6. User need search for link to the desired screen /

activity.

7. User need to look carefully for desired notification at

all notification bars.

To handle these, and many more this kind of issues, Intent

Driven Design comes in three phases -

1. Requirement Gathering

2. Implementation

3. Post Go-Live

II. REQUIREMENT GATHERING

As the size of software system grows, the difference

between vision between stakeholders also increase. It is

difficult for any human being to have complete vision of

entire software system of this size. This becomes bigger issue

when stakeholders from different departments with different

perceptions and different priorities try to push their own ideas

up in the priority queue.

The architect and developer teams need to run around all of

them to find a common vision.

Therefore, IDD suggests to gather the intentions behind

every 'requirement'. This will make the stakeholders think

again about the real reason behind having the requirement as

well as it will help everybody to place it at appropriate

location in the priority queue.

For example, if the main intention behind having the

software system is to track employees attendance, then email

/ sms notifier should take back seat in priority queue. In short,

those requirements which are in the list just because some of

the stakeholders 'liked the idea', should not be at top priority.

Thus, architects and developers should always first ask,

'why do you want to have this particular requirement' before

discussing about 'how this should work'.

Therefore, the stakeholders should describe the intention

and answer the following questions -

1 Why is this particular application / requirement is

Intent Driven Design (IDD)

Saurabh Dhupkar

Intent Driven Design (IDD)

 232 www.erpublication.org

required ?

2 What exactly will it do for your organization ?

i. How the particular activity is being handled

currently and how it is expected to be handled

by the system ? (Record the expected distinct

'before - after scenario')

3 What are the desired roles for this ? (Roles for users

for performing tasks, roles for batch jobs for

performing tasks etc.)

Too many intentions can make the the system too much

complicated. It can make things worse if the intentions are

conflicting. However, IDD gives you a chance to handle them

much before the application reaches UAT level. This can

help architects and developers to identify, understand and

handle the conflicting intentions at first stage itself rather

than running around and try to find the 'work around' at last

stages. Conflicting intentions is one of the major reasons

behind failures of the system or systems being 'just

satisfactory'. It all comes down to the thoughts like -

"Developers took this much time, and yet they build 'this' !!!"

and "Developers worked so hard, they even worked

overnight and on weekends, but still client is not happy ... ".

Overambitious projects are more likely to end up with

these thoughts due to delays or surprises.

Use of IDD can help you reduce or minimize the

possibility of system reaching to the above mentioned

thoughts.

With the help of IDD, these overambitious projects can be

divided into smaller parts based on intentions and the

priorities of intentions. Functionalities that come under one

intention can be grouped and developed together. Sequence

of development of intentions can be decided based on priority

and the dependency of the intention.

Thus, the system should be built intention by intention.

IDD is quick and effective methodology for capturing real

useful set of functional requirements from non-technical

stakeholders and translate them to well-architected working

code.

A. PROS

1. Increases clarity behind every functionality to all the

stakeholders.

2. Simplifies the prioritization of functionalities.

3. Enables architects and developers to come up with

improvement suggestions as everybody is aware of

intention behind the functionality.

4. IDD helps all the stakeholders to have common /

shared vision.

5. Design becomes more futuristic.

B. CONS

1. It may be difficult trade-off between IDD and

Business Secrets. (As it might not be possible always

to come up with a dummy intention.)

It is something like "You should not hide anything from

Doctor and Lawyer". As nowadays the health of business

depends a lot on the software system it is using..

III. IMPLEMENTATION

During implementation IDD shifts its focus from

intentions of stakeholders to intentions of users.

Users use the application or WebApp due to some

'Intention'. That intention makes the users to perform certain

'Activity' or a set of 'Activities'. All the other stuff on screen

is useless for him/her as the user will be focussed towards the

intention behind using the application. Therefore, most

relevant things can be shown to user, if the application is

aware of the intention behind the visit of user to the

application. This can help user to perform desired activities

faster on a simplified user interface."

Just to make things more clear, business people are

providing certain functionality with some of their own

intention(s) and users are using it with some of their own

intention(s).

Following are some of the main problems that can be

avoided by using IDD –

1. Crowding of links

2. Too many notification bars OR long list of

notifications making one cycle very lengthy

3. Difficult to beautify the page

4. User needs to actually 'search' for links to his/her

desired activity.

Therefore, in this phase the set of functionalities finalized

from the Requirement Gathering phase are divided into

groups based on possible user intentions. Architects and

developers need to select the possible intentions by which

user will use the system and group the activities that can be

selected under that particular intention.

The software system should request the user to select the

intention from the list of allowed intentions to that user.

Based on selected intention, show the links of the activities to

user. Also let the user change the 'selected intention' during

session. The system should maintain the record of selected

intentions and selected activities for future use.

e.g. - While asking user to select intention for current visit,

show the list of intention ordered as per his/her choices in

past (like most selected to least selected)

A. PROS

1. Development can be done Intention by intention.

2. UI can be made simpler and more uncongested.

3. Having same UIs for Mobile, Computer etc can be

made possible as UIs are simpler, which helps to

reduce the cost of development.

4. Instead of bombarding user with all types of

notifications, only the notifications related to the

selected Intention can be shown, which results into

shorter notification cycles and lesser number of

notification bars. This reduces the possibility of

notification bar getting neglected.

5. Extremely easy to adapt new functionalities at any

point of time in life of software system.

B. CONS

1. Architecture may become delicate if intentions are

not properly listed.

2. Design MUST be futuristic, otherwise application

may fail or huge amount of rework will be required.

3. Weak design may lead to poor maintainability.

4. Stakeholders and System Architects MUST be clear

about the system and potential users.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 233 www.erpublication.org

IV. POST GO-LIVE

Every time when a user selects any intention, the system

should make an entry of it in database. Same is for activities.

This will help stakeholders to understand how the system is

being used (by what intention).

Support teams should periodically fetch usage matrices

from database. e.g. - Intentions Vs Age of user, Intentions Vs

Geographic Location of user, Intention Vs period of year etc.

This data will be very helpful for future growth.

A. PROS

1. Stakeholders can get the biggest Intentions behind

users using the software application.

2. Intention is the main reason behind use of software

application, and stakeholders can get more hold on it.

3. Some intention can have higher priority than other,

and application maintenance and SLAs / OLAs can

be decided based on priority of Intention.

4. Most used Intentions and most used links can get first

position on screen. (Ordering and layout of Intention

and links can be decided based on frequency of

selection and use.)

5. Stakeholders can come to know the area of main

focus (Instead of guessing the most used links, or

calculating them based on logs or some third party

site meters or site catalyst, stakeholders can get actual

counts from users themselves.)

6. Stakeholders can get better view of variations of

intentions with respect to age, geographic location,

education of users etc.

7. In case of marketing / sales applications, this data can

help a lot to the stakeholders as they can map a matrix

of Intentions Vs Age of users, Intentions Vs

Geographic Location of users etc.

8. Stakeholders can also get the duration wise variations

in intentions. i.e. If some particular intention(s) are

being selected at some particular time e.g. – Income

Tax department will get maximum hits for 'Tax

payment' at March end and 'Income Tax Returns' at

September

9. Once 'Intention Load Matrix' is obtained, hardware

resources can be mutualized to get optimum results

and noisy[3] neighbour effect can be avoided or

minimized.

10. Technical support team can derive the 'Number of

complaints Vs Intention' matrix which can help

stakeholders and technical team to focus at exact

impact area.

11. If found that system is working fine, then it means

that complaints are coming due to inappropriate or

incomplete design or definition of that particular

Intention.

12. As the Intent-Driven System grows old, it becomes

more and more mature and the design itself will

reduce the number of complaints over certain time

period.

13. Historical data of IDD will guide its future

transformation of system.

B. CONS

1. Stakeholders and technical team MUST keep on

studying the matrix reports, otherwise the system will

NOT achieve the maturity it is expected to reach.

V. CONCLUSION

―Karma should be known. The cause by which karma

comes into play should be known.‖[4] IDD suggests

architects to take into consideration the intentions of both

ends, the stakeholders and users for better architecture and

simplicity. Use of IDD certainly increases usability[5] of

system as well as makes it more futuristic. It also provides

important information for software transformation phase[6].

―Companies spending less than 13 percent of their ERP

project costs on training are three times more likely to fall

short of their business and project goals than organizations

spending 17 percent or more‖[7] In case of Intent-Driven

Design, the cost of user training is much less as it also

possesses the simplicity of common WebApp.

'Intent-Driven Design' can also be used to design the

desktop based applications. The only constraint in that case

should be to collect the usage record from individual user

machines to generate the intentions matrices for further

evolution. As the contribution of Cloud computing[8] will

increase, even desktop applications will also be continuously

connected to their respective servers which will make it

easier to fetch the usage data and generate the matrices.

REFERENCES

[1] https://en.wikipedia.org/wiki/Maintainability

[2] https://en.wikipedia.org/wiki/Modularity

[3] http://en.wikipedia.org/wiki/Cloud_computing_issues
[4] Nibbedhika Sutta by Gautam Buddha

[5] https://en.wikipedia.org/wiki/Usability

[6] https://en.wikipedia.org/wiki/Program_transformation
[7] http://www.trainingmag.com/end-user-training-afterthought-or-key-er

p-success

[8] http://en.wikipedia.org/wiki/Cloud_computing
[9] Peter Bell, (2008). An Introduction to Intent Driven Design -

http://peterbell.sys-con.com/node/311316/mobile

[10] INTENT-DRIVEN DESIGN : DESIGNING AND DEVELOPING
SOFTWARE’S BASED ON INTENTIONS OF USERS. International

Journal of Advanced Computer Technology

(IJACT).(ISSN:2319-7900) -
http://ijact.org/volume3issue6/IJ0360067.pdf

Saurabh Dhupkar received the B.E. degree in Computer Engineering

from the University of Pune, City Pune, State Maharashtra, in 2008.
Currently, He is working as Senior Consultant at Capgemini India Pvt. Ltd.

His work area is more inclined in JAVA and Unix for application

development and maintenance. He is beginner in the field of research and
this is his second research paper.

