

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869, Volume-3, Issue -3, March 2015

 220 www.erpublication.org



Abstract— Every communication system must be able to

replicate the transmitted data at the receiver approximately the

same if not exact. Smaller the amount of data lesser is the

bandwidth consumption and also the probability of erroneous

reception also decreases. Source coding schemes such as

Lempel-Ziv coding help compress the data before transmission

and thus help in bandwidth saving. But the compressed data

must be decompressed before use. Also the compression time

required leads to a delay in data transmission which may prove

fatal in real time systems.

To reduce the compression or encoding time of Lempel-Ziv

coding, hashing technique can be used which is the core of this

work. Hashing allows fast and easy access to the stored data,

thereby reducing the search time from exponential to linear or

in some cases constant or nearly stable.

I. INTRODUCTION

Claude Shannon ignited the area of source coding with his

ground breaking papers [1] in the late 1940s and early 1950s.

Shannon essentially forged the theoretical background of

compression using information theory for lossless

compression and rate-distortion theory for lossy compression.

In information theory, data compression or source coding

involves encoding information using fewer bits than the

original. Compression can be either lossy or lossless. Lossless

compression reduces bits by removing statistical redundancy.

Lossy compression reduces bits by removing unnecessary

information. The process of reducing the size of a file is

referred to as data compression, though formally it is called

source coding.

Compression is useful as it helps reduce resources usage, such

as storage space or transmission capacity. But we must

decompress the compressed data before use. This overhead

Processing imposes extra computational costs. For instance, a

compression scheme for video may require expensive

hardware for the video to be decompressed fast enough to be

viewed as it is being decompressed, [2] and the option to

decompress the video in full before watching it may be

inconvenient or require additional storage. The design of data

compression schemes [3] involves trade-offs among various

factors, including the degree of compression, the amount of

distortion introduced and the computational resources

required to compress and un-compress the data [4].

Manuscript received March 20, 2015.

 Megha Atwal, Student, Department of Computer Science &

Engineering, Bhai Maha Singh College of Engineering, Shri Muktsar Sahib,

Punjab, India,

Lovnish Bansal, Assistant Professor, Department of Computer Science

& Engineering, Bhai Maha Singh College of Engineering, Shri Muktsar

Sahib, Punjab, India,

II. DICTIONARY

A. Dictionary Coding

Dictionary coding techniques rely upon the [5] observation

that there are correlations between parts of data (recurring

patterns). The basic idea is to replace those repetitions by

(shorter) references to a "dictionary" containing the original.

B. Static Dictionary

The simplest forms of dictionary coding use a static

dictionary. Such a dictionary may contain frequently

occurring phrases of arbitrary length, di-grams (two-letter

combinations) or n-grams. This kind of dictionary can easily

be built upon an existing coding such as ASCII by using

previously unused codewords or extending the length of the

codewords to accommodate the dictionary entries [6].

A static dictionary achieves little compression for most data

sources. The dictionary can be completely unsuitable for

compressing particular data, thus resulting in an increased

message size (caused by the longer codewords needed for the

dictionary)[7].

C. Semi Adaptive Dictionary

The aforementioned problems can be avoided by using a

semi-adaptive encoder. This class of encoders creates a

dictionary custom-tailored for the message to be compressed.

Unfortunately, this makes it necessary to transmit/store the

dictionary together with the data. Also, this method usually

requires two passes over the data, one to build the dictionary

and another one to compress the data. [8] A question arising

with the use of this technique is how to create an optimal

dictionary for a given message. Fortunately, there exist

heuristic algorithms for finding near-optimal dictionaries.

D. Adaptive Dictionary

The Lempel Ziv algorithms belong to this third category of

dictionary coders. The dictionary is being built in a single

pass, while at the same time also encoding the data. As we will

see, it is not necessary to explicitly transmit/store the

dictionary because the decoder can build up the dictionary in

the same way as the encoder while decompressing the data[9].

III. LEMPEL ZIV ALGORITHM

The Lempel Ziv Algorithm is an algorithm[10] for lossless

data compression which employs adaptive dictionary coding.

It is not a single algorithm, but a whole family of algorithms,

stemming from the two algorithms proposed by Jacob Ziv and

Abraham Lempel in their landmark papers in 1977 and 1978

as shown below. In this work we will only consider the

original Lempel-Ziv algorithm proposed in 1978, also known

as LZ’78 algorithm.

Fast Lempel-ZIV (LZ’78) Algorithm Using

Codebook Hashing

Megha Atwal, Lovnish Bansal

 Fast Lempel-ZIV (LZ’78) Algorithm Using Codebook Hashing

 221 www.erpublication.org

Figure 1: The Lempel Ziv Algorithm Family [6].

A. Principal

The LZ’78 is a dictionary-based compression algorithm that

maintains an explicit dictionary. The codewords output by the

algorithm consist of two elements: an index referring to the

longest matching dictionary entry and the first non-matching

symbol.In addition to outputting the codeword for

storage/transmission, the algorithm also adds the index and

symbol pair to the dictionary. When a symbol that not yet in

the dictionary is encountered, the codeword has the index

value 0 and it is added to the dictionary as well. With this

method, the algorithm gradually builds up a dictionary [10].

This simplified pseudo-code version of the algorithm does not

prevent the dictionary from growing forever. There are

various solutions to limit dictionary size, the easiest being to

stop adding entries and continue like a static dictionary coder

or to throw the dictionary away and start from scratch after a

certain number of entries has been reached.

IV. OBJECTIVE

Main objective of this work is to minimize the encoding time

using the hashing technique of a finite long data sequence.

Hashing is widely used technique used to accelerate table

lookup or data comparison tasks such as finding items in a

database, detecting duplicated or similar records in a large

file, finding similar stretches in DNA sequences, and so on.

The main focus of this work is to use implement hashing in

LZ’78 algorithm and thereby making the LZ’78 phrase

dictionary easily and swiftly searchable, without sacrificing

the coding efficiency and the compression ratio attained by

the LZ’78 algorithm. The following sections explain the

implementation details. The software used to illustrate the

results and findings is – Visual Studio2012.

V. LZ’78 ENCODING USING HASHING

LZ’78 dictionary grows without bounds and yields long

phrases but every phrase is unique, i.e., no two phrases would

match each other. We exploited this condition of LZ’78 and

used it to build a Hashtable. At every point when a new

unique phrase is generated while encoding using LZ’78, we

need to save that phrase in the dictionary along with its

corresponding index (generated continuously). But in case of

hashtable, we used reverse mapping. At every point when a

new unique phrase is generated while encoding using LZ’78,

we would add a new entry in the hashtable with the generated

unique phrase as key and the corresponding index as value. In

this way for every new unique phrase generated instead of

new dictionary entry we made a new hash entry. In this way

by using hashing to create the LZ’78 dictionary, which always

consists of unique phrases, we can quickly search through the

previous hash entries and increasing the speed of the whole

encoding process on the whole. The following section shows

the LZ’78 encoding algorithm using hashtable and is

self-explanatory[10].

VI. RESULTS

A. Test Case #1

Test Case #1 uses a string of 1,00,000 characters as input to

LZ’78 encoder. The following sub-sections illustrate the

result of test case #1 using LZ’78 with and without hashing.

The GUI used is generated using Visual Studio 2012.

Fig. 2: Test Case #1 – LZ’78 Coding (Without Hashing)

Fig. 3: Test Case #1 – LZ’78 Coding (With Hashing)

The user needs to enter a text message to encode. The Encode

button will encode the entered text using LZ’78 without

Hashing (as the ‘Use Hashing’ checkbox is not checked.)

using base-2, 8 and 16 encoding. At first entered text is

converted to binary sequence and then encoded using the

binary, octal and hexadecimal encoding schemes with the

help of LZ’78 and Hashing. The encoding results are

displayed in the GUI corresponding to each encoding type as

shown in the above figure. The decode button will decode the

corresponding encoded data and display the results as shown

above.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869, Volume-3, Issue -3, March 2015

 222 www.erpublication.org

The Encode button will encode the entered text using LZ’78

with Hashing (as the ‘Use Hashing’ checkbox is checked).

Rest all the process of encoding and decoding is same as

explained in the previous section with LZ’78 without hashing.

B. Test Case #2

Unlike the previous test case the Test Case #2 uses a string of

2,00,000 characters as input to LZ’78 encoder and performs

encoding with and without hashing. The following two figures

show the test results.

Fig. 4: Test Case #2 – LZ’78 Coding (Without Hashing)

Fig. 5: Test Case #2 – LZ’78 Coding (With Hashing)

VII. COMARISON

We compare the above test cases using two parameters, viz.,

encoding time and compression ratio. Encoding time should

be as small as possible and compression ratio should ideally

be less than 100%. Less ratio implies that the encoded

sequence length is less than the original message length (in

binary) and that the data is compressed.

The following tables summarize the results obtained from the

previous test cases for base-2 encoding only.

Table 1.1: Compression Ratio comparison for different

message length.

Input

Binary

Message

Length

Encoded

Message

Length

Code Book

Entries

Compression

Ratio

801,096 611,609 39,833 76.35 %

1,602,200 1,170,977 72,337 73.09 %

2,402,448 1,706,459 102,086 71.03 %

Table 1.2: Encoding time comparison with and without

Hashing.

Input Message

Length

(Binary Message)

Time taken to Encode

With Hashing Without Hashing

801,096 0.422 seconds 46.000 seconds

1,602,200 1.000 seconds 157.635 seconds

2,402,448 1.562 seconds 319.818 seconds

We can see from the results obtained in table 1, larger the

input message length more is the compression ratio. Also the

number of code book entries increase with input message

length. With such a huge amount of entries it is virtually

impossible for any system to perform a real-time search.

Form the results obtained in table 2, we can see that with

increase in the number of codebook entries the encoding time

increases from 46 seconds to nearly 320 seconds without

hashing. But as explained earlier about fastness of hashing,

we can see that the encoding time remains almost unchanged

with increase in number of codebook entries. It increases but

slowly as compared to the one without hashing. Hence, our

results.

VIII. CONCLUSION

In this paper we presented a source coding scheme that we call

Hashed Lempel-Ziv coding, as an extension for the LZ’78

coding scheme, without sacrificing the coding efficiency and

the compression ratio attained by the original LZ’78

algorithm.

In addition to outputting the codeword for

storage/transmission, the algorithm also adds the index and

symbol pair to the dictionary. When a symbol that not yet in

the dictionary is encountered, the codeword has the index

value 0 and it is added to the dictionary as well. With this

method, the algorithm gradually builds up a dictionary.

But LZ’78 has several weaknesses. First of all, the dictionary

grows without bounds. Various methods have been

introduced to prevent this, the easiest being to become either

static once the dictionary is full or to throw away the

dictionary and start creating a new one from scratch. There

are also more sophisticated techniques to prevent the

 Fast Lempel-ZIV (LZ’78) Algorithm Using Codebook Hashing

 223 www.erpublication.org

dictionary from growing unreasonably large. The dictionary

building process of LZ’78 yields long phrases only fairly late

in the dictionary building process and only includes few

substrings of the processed data into the dictionary.

Larger the dictionary, better is the coding efficiency. But the

main drawback of large dictionary is the amount of time

required to look for uniqueness of every new phrase in the

dictionary. Each time we have to search the whole dictionary

to check whether the phrase encountered is already present in

the dictionary or not. Thus, searching the dictionary takes a

very-very-very long time, because each search needs ‘r’

comparisons (‘r’ is the current number of phrases in the

codebook). Also, we can’t use Binary search too, as the

phrases in the dictionary are unsorted.

To solve this problem, we used Hashing technique. Hashing

can be used for faster search in a dictionary. As seen in the

results obtained, hashing only makes the encoding process of

LZ’78 coding faster, with no change in the coding efficiency

or compression ratio. Irrespective of the size of the codebook

the time taken to encode using Hashed LZ’78 was more or

less the same. But without hashing there was a huge difference

in time taken to encode and hence our results were justified.

REFERENCES

 [1] A.-R. Elabdalla and M. Irshid, "An efficient bit-wise source encoding

technique based on source mapping," in Devices, Circuits and

Systems, 2000. Proceedings of the 2000 Third IEEE International

Caracas Conference on, 2000.

[2] D. Kirovski and Z. Landau, "Generalized Lempel--Ziv compression

for audio," Audio, Speech, and Language Processing, IEEE

Transactions on, vol. 15, no. 2, pp. 509-518, 2007.

[3] M. B. B. Loranca and L. A. O. Santos, "Multiple correspondences and

log-linear adjustment to test single correspondence relationships and

categorization of qualitative data in e-commerce," in Electronics,

Communications and Computers, 2004. CONIELECOMP 2004. 14th

International Conference on, 2004.

[4] C. E. Shannon, "A mathematical theory of communication," ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 5,

no. 1, pp. 3-55, 2001.

[5] J. Ziv and A. Lempel, "Compression of individual sequences via

variable-rate coding," Information Theory, IEEE Transactions on,

vol. 24, no. 5, pp. 530-536, 1978.

[6] K. Sayood, Introduction to data compression, Newnes, 2012.

[7] T. Weissman, N. Merhav and A. Somekh-Baruch, "Twofold universal

prediction schemes for achieving the finite-state predictability of a

noisy individual binary sequence," Information Theory, IEEE

Transactions on, vol. 47, no. 5, pp. 1849-1866, 2001.

[8] T. A. Welch, "A technique for high-performance data compression,"

Computer, vol. 17, no. 6, pp. 8-19, 1984.

[9] M. E. Hellman, "An extension of the Shannon theory approach to

cryptography," Information Theory, IEEE Transactions on, vol. 23,

no. 3, pp. 289-294, 1977.

[10] R. N. Williams, "An extremely fast Ziv-Lempel data compression

algorithm," in Data Compression Conference, 1991. DCC'91., 1991.

