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 

Abstract— In this paper, we establish traveling wave 

solutions by using sine-cosine function method for Classical 

Boussinesq (CB), and the Mikhailov-Shabat (MS) equations 

which are nonlinear partial differential equations and also 

important soliton equations. It is shown that the sine-cosine 

method provides a powerful mathematical tool for solving many 

nonlinear partial differential equations in mathematical 

physics. 
 

Index Terms— Sine-Cosine function method, Traveling wave 

equation, Classical Boussinesq equation, Mikhailov-Shabat 

equations.  

I. INTRODUCTION 

The nonlinear evolution equations have a major role in 

various scientific and engineering fields, such as fluid 

mechanics, plasma physics, optical fibers, solid state physics, 

chemical physics and geochemistry. Nonlinear wave 

phenomena of dispersion, dissipation, diffusion, reaction and 

convection are very important in nonlinear wave equations. 

In recent years, quite a few methods for obtaining explicit 

traveling and solitary wave solutions of nonlinear evolution 

equations have been proposed. A variety of powerful 

methods, such as, tanh sech method {Malfliet W. [1], Khater 

et al. [2], and Wazwaz [3]}, extended tanh method {El-Wakil 

et al. [4], Fan [5], Wazwaz [6]}, hyperbolic function method 

{Xia and Zhang[7], and Yusufoglu and Bekir [8]}, Jacobi 

elliptic function expansion method {Inc and Ergut[9]}, 

F-expansion method {Zhang [10]}, and the First Integral 

method {Feng [11], Ding and Li [12]} . The sine-cosine 

method {Mitchell [13], Parkes [14], and Khater [2]} has been 

used to solve different types of nonlinear systems of PDEs.  

     The aim of this paper is to find the exact and periodic 

solutions by the sine-cosine method of the Mikhailov-Shabat 

(MS) equation and Classical Boussinesq (CB) equation, 

which are the important soliton equations. 

II. THE SINE-COSINE FUNCTION METHOD 

We introduce the wave variable     into the PDE 

.      (1)                     

Where u(x,t) is traveling wave solution. This enables us to use 

the following changes: 
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                      (2) 

One can immediately reduce the nonlinear PDE (1) into a 

nonlinear ODE 

       (3) 

The ordinary differential equation (3) is then integrated as 

long as all terms contain derivatives, where we neglect 

integration constants.  

The solutions of many nonlinear equations can be 

expressed in the form {Ali et al. [15], Wazwaz [16]-[17]} 

     (4) 

Or, in the form 

      (5) 

Where λ, μ and β≠0 are parameters that will be determined, 

μ and c are the wave number and the wave speed respectively. 

We use 

  

   

     (6) 

 And  

  

  

    (7) 

And so on for other derivatives. 

 

We substitute (6) or (7) into the reduced equation obtained 

above in (3), balance the terms of the cosine functions when 

(7) is used, or balance the terms of the sine functions when (6) 

is used, and solving the resulting system of algebraic 

equations by using the computerized symbolic calculations 

We next collect all terms with same power in  or 

   and set to zero their coefficients to get a system of 

algebraic equations’ among the unknowns μ, β and λ. We 

obtained all possible value of the parameters μ, β, and λ. 
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III. APPLICATIONS 

A. The Classical Boussinesq Equations 

 

The Classical Boussinesq (CB) equations 

 

                                       

                  (8) 

In order to obtain travelling wave solutions of equation (8), 

we make the transformations 

  

And integrating once with respect to ξ, then (8) becomes; 

 

            (9) 

And 

                  (10) 

Substituting Eq. (10) into Eq. (9) leads to the following ODE 

  

       (11) 

Using (6) into (11) we get, 

 

                         (12) 

Equating the exponents and the coefficients of each pair of 

the sine functions we find the following algebraic system: 

 

 

              (13) 

Substituting Eq. (13) into Eq. (12) to get: 

 

                         (14) 

Equating the exponents and the coefficients of each pair of 

the sine function, we obtain a system of algebraic equations: 

 

 

              (15) 

 
By solving the algebraic system (15), we get 

 

                        (16) 
In view of (4) and (16) we obtain the periodic solutions  

   

                               (17) 
Where  

To find the solutions   , according to (10) 

              (18) 

By means of the equations (4) and (16) and using equation 

(18), we have the following periodic solutions for : 

 

                       (19) 
Where   

From the equations (17) and (19) we get the solutions of the 

CB equation by the sine-cosine method. 

 

B. The Mikhailov-Shabat (MS) Equation 
 

In this section we deal with the Mikhailov-Shabat (MS) 

equations 

                              

     (20) 
In order to solve MS system (20) we now introduce the 

transformation 

 

 

         (21) 

Then the MS system (20) becomes 

 

 

        (22) 

Substituting 

 

  (23) 

(Where k and c are real constants) into (22) and integrating 

once with respect to ξ we get  

                (24) 

And 

         (25) 

Taking (24) into (25), we obtain the following ODE; 

      (26) 

Seeking solutions of the form (6) we get: 

 

  

                      (27) 

Equating the exponents and the coefficients of each pair of 

the sine functions we find the following algebraic system: 

  

           (28) 
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Substituting Eq. (28) into Eq. (27) to get: 

 

 

 

Equating the exponents and the coefficients of each pair of 

the sine function, we obtain a system of algebraic equations:  

 

 

               (29) 

 

By solving the algebraic system (29), we get, when   

 

       (30) 

In view of (4), (5), (23) and (30), for   < 0, we obtain the 

periodic solutions 

 

(31) 

Where, 0< ±  <π 

And 

 (32) 

Where, 0< ±  <  

And for   > 0, we obtain the periodic solutions 

 

 (33) 

And 

  (34) 

To find the solutions  , according to (24) 

                 (35) 

By means of the equations (4), (5) and (23) and using 

equation (35), we have the following periodic solutions 

for : 

When  we get  

 

 

                         (36) 

And 

 

                         (37) 

When    we get 

                         (38) 

And 

                           (39)  

 

IV. GRAPHICAL INTERPRETATION 

 

In this section, we will put forth the graphical 

representation of determined traveling wave solutions of the 

Classical Boussinesq (CB) equations. 

 
 

       
1(a) 
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1(b) 

Figure 1: (a) u(x,t)  in equations (19) and (b) v(x,t) in 

equations (17) where   & taking +ve sign. 

 

 
         2(a) 

 

 
        2(b) 

Figure 2:(a) u(x,t) in equations (19) and (b) v(x,t) in 

equations (17) where   & taking -ve sign. 

 

 

 
        3(a) 

 

 
        3(b) 

 

Figure 3: (a) u(x,t) in equations (19) and (b) v(x,t) in 

equations (17) where   & taking +ve sign 

 

 

 
              4(a) 
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       4(b) 

Figure 4: (a) u(x,t)  in equations (19) and (b) v(x,t) in 

equations (17) where   & taking -ve sign. 

 

 

 
        5(a) 

 

 
 

        5(b) 

Figure 5:(a) u(x,t)  in equations (19) and (b) v(x,t) in 

equations (17) where   & taking +ve sign. 

 

 
 

               6(a) 

 

 
 

        6(b) 

Figure 6:(a) u(x,t)  in equations (19) and (b) v(x,t) in 

equations (17) where   & taking -ve sign. 

 

 

In this section, we will put forth the graphical 

representation of determined traveling wave solutions of 

Mikhailov-Shabat (MS) equation 

 

 
        7(a) 
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        7(b) 

Figure 7: (a) u(x,t)  in equations (31) and (b) v(x,t) in 

equations (36) where  . 

 

 
             8(a) 

 

 
 

          8(b) 

Figure 8: (a) u(x,t)  in equations (31) and (b) v(x,t) in 

equations (36) where  . 

 

 
        9(a) 

 

 
        9(b) 

Figure 9: (a) u(x,t)  in equations (32) and (b) v(x,t) in 

equations (37) where   

 

 

 
                               10(a) 
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       10(b) 

Figure 10: (a) u(x,t) in equations (32) and (b) v(x,t) in                             

equations (37) where   

 

 
       11(a) 

 

 
       11(b) 

Figure 11: (a) u(x,t)  in equations (33) and (b) v(x,t) in 

equations (38) where   

 

 
        12(a) 

 

 
        12(b) 

Figure 12: (a) u(x,t)  in equations (33) and (b) v(x,t) in      

equations (38) where   

 

 
        13(a) 
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        13(b) 

Figure 13:(a)u(x,t) in equations (34) and (b) v(x,t) in                   

equations (39) where   

 

 
        14(a) 

 

 
       14(b) 

Figure 14:(a)  u(x,t)  in equations (34) and  (b) v(x,t) in 

equations (39) where   

 

V. CONCLUSION 

In this paper, we proposed the sine-cosine method to seek 

the periodic solutions of the NPDE. It is shown that this 

method is more powerful in giving more kinds of solutions. 

By making use of the method, we study the Mikhailov-Shabat 

(MS) equations’ and the classical system of Boussinesq 

equations’, new families of solutions written are found. The 

method is used to find a new exact and periodic solutions for 

the CB and MS equations. Thus, we can say that the proposed 

method can be extended to solve the problems of nonlinear 

partial differential equations which arising in the theory of 

solitons and other areas. These solution was similar to the 

solutions obtained in other paper. The study reveals the 

power of the method. 
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