

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 11 www.erpublication.org

Abstract— We all know that in recent modern era software

is the basic requirement for operating almost every digital

machine. So software development life cycle is also required.

The purpose of this paper is to explain SDLCs and their types. It

also list down merits and demerits of SDLCs. And it also

explains AGILE Software development life cycle. How it is

better than other SDLCs which type of merits it have? How it

helps to overcome the loopholes present in other SDLCs? This

research basically focused on AGILE. Researcher want to

explain almost every point related to the AGILE software

development life cycle.

Index Terms— Software Development Life Cycle, SDLC

models, Agile Manifesto, Different Styles of Agile.

I. INTRODUCTION

 Process of Software development starts when someone feels

the requirement of software and end when the use of that

software finished. For making good software there are many

steps which have to follow. These steps are:

1). Planning 2). Requirement 3). Design phase 4). Coding 5).

Testing 6). Implementation / Maintenance. These phases are

base of a software development.

There are many software development life cycles presented

till now. These SDLCs are applicable on different-different

situations for software development. These SDLCs are:

 Waterfall SDLC

 Prototype SDLC

 Iterative SDLC/ Incremental SDLC

 Spiral SDLC

 V-SDLC

All above SDLCs are good to produce software and in

efficient manner but these are traditional SDLCs and problem

with these are time consumption and large documentation. So

overcome these problems Agile SDLC is proposed. In this

paper we discussed about agile and its type. How agile is

better than other? Section 1 is introduction; section 2 is short

description of SDLCs and loopholes of these SDLCs; in

section 3 we discussed Problem associated with traditional

methods in section 4 we describe Agile SDLC and its type; in

section 5 we describe that which loopholes covered by Agile

and how it help to overcome; in section 6 we discuss about

future work in Agile; section 7 is conclusion.

Manuscript received March 02, 2015.

 Abhilasha yadav,Sri Satya Sai Institute of Science & Technology,

Sehore.

II. SDLC

SDLC, Software Development Life Cycle is a process used by

software industry to design, develop and test high quality

software. The SDLC aims to produce high quality software

that meets or exceeds customer expectations, reaches

completion within times and cost estimates.

A. Waterfall SDLC

The Waterfall Model was first Process Model to be

introduced. It is also referred to as a linear-sequential life

cycle model. It is very simple to understand and use. In a

waterfall model, each phase must be completed before the

next phase can begin and there is no overlapping in the

phases. [18, 22]

Fig1 waterfall model

1) Requirement analysis: In this phase all possible

requirements of the system are being collected in this

phase and documented in a requirement specification

doc.

2) System Design: In this phase blueprint of system is created.

This phase helps in specifying hardware and system

requirements and also helps in defining overall system

architecture.

3) Implementation: In this phase the system is first developed

in small programs called units, each unit is developed and

tested for its functionality which is referred to as Unit

Testing.

4) Integration and Testing: after implementation of all units

these units are integrated into a single system. And after

that the entire system is tested for any faults and failures.

5) Deployment of system: Once the functional and non

functional testing is done, the product is deployed in the

customer environment or released into the market.

6) Maintenance: There are some issues which come up in the

client environment. To fix those issues patches are

released. Also to enhance the product some better

versions are released. Maintenance is done to deliver

these changes in the customer environment.

B. Iterative SDLC/ Incremental SDLC:

AGILE: Software development model

Abhilasha yadav

AGILE: Software development model

 12 www.erpublication.org

An iterative life cycle model does not attempt to start with a

full specification of requirements. Instead, development

begins by specifying and implementing just part of the

software, which is then reviewed in order to identify further

requirements. This process is then repeated, producing a new

version of the software at the end of each iteration. [18, 22]

 Fig2 Iterative SDLC/Incremental SDLC

C. Spiral SDLC

Spiral model is a combination of iterative development

process model and sequential linear development model i.e.

waterfall model with very high emphasis on risk analysis. It

allows for incremental releases of the product, or incremental

refinement through each iteration around the spiral.

The spiral model has four phases these phases are: [18, 22]

Fig3 Spiral-SDLC

1) Identification: This phase starts with gathering the

business requirements in the baseline spiral. This also

includes understanding the system requirements by

continuous communication between the customer and

the system analyst.

2) Design: Design phase starts with the conceptual design

in the baseline spiral and involves architectural design,

logical design of modules, physical product design and

final design in the subsequent spirals.
3) Construct or Build: Construct phase refers to production

of the actual software product at every spiral. In the

baseline spiral when the product is just thought of and

the design is being developed a POC (Proof of Concept)

is developed in this phase to get customer feedback.

4) Evaluation and Risk Analysis: Risk Analysis includes

identifying, estimating, and monitoring technical

feasibility and management risks, such as schedule

slippage and cost overrun. After testing the build, at the

end of first iteration, the customer evaluates the software

and provides feedback.

D. V-SDLC

V -Model is an extension of the waterfall model and is

based on association of a testing phase for each

corresponding development stage. This means that for

every single phase in the development cycle there is a

directly associated testing phase. This is a highly

disciplined model and next phase starts only after

completion of the previous phase.

Under V-Model, the corresponding testing phase of the

development phase is planned in parallel. So there are

Verification phases on one side of the ‗V‘ and

Validation phases on the other side. Coding phase joins

the two sides of the V-Model.

Following are the Verification phases in V-Model:[18,

22]

1) Business Requirement Analysis: This is the first phase in

the development cycle where the product requirements

are understood from the customer perspective.

2) System Design: After getting clear and detail about

product requirements, then it‘s time to design the

complete system. System design would comprise of

understanding and detailing the complete hardware and

communication setup for the product under

development.

3) Architectural Design: Architectural specifications are

understood and designed in this phase. This is also

referred to as High Level Design (HLD).

4) Module Design: In this phase the detailed internal design

for all the system modules is specified, referred to as

Low Level Design (LLD).

5) Coding Phase: In the Coding phase the best suitable

programming language is decided based on the system

and architectural requirements. The coding is performed

based on the coding guidelines and standards.

6) Validation Phases: Following are the Validation phases

in V-Model:

 Unit Testing: Unit testing is the testing at code level and

helps eliminate bugs at an early stage, though all defects

cannot be uncovered by unit testing.

 Integration Testing: Integration tests are performed to test

the coexistence and communication of the internal

modules within the system.

Fig4 V-SDLC

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 13 www.erpublication.org

 System Testing: System tests check the entire system

functionality and the communication of the system

under development with external systems. Most of

the software and hardware compatibility issues can

be uncovered during system test execution.

 Acceptance Testing: Acceptance tests uncover the

compatibility issues with the other systems available

in the user environment.

III. PROBLEM ASSOCIATED WITH TRADITIONAL

METHODS [18, 22]

1) Waterfall Model: The major weaknesses of the Waterfall

Model are

 No working software is produced until late during the

life cycle.

 High amount of risk and uncertainty.

 Not a good model for complex and object oriented

subject.

 Poor model for long and ongoing projects.

 Not suitable for the project where requirements are at

a moderate to the high risk of changing. So risk and

uncertainty is high with this process model.

 It is difficult to measure progress within stage.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle.

 Integration is done as a ―big-bang‖ at the very end,

which does not allow identifying any technology or

business bottleneck or challenges early.

2) t

erative Model: Loopholes of iterative model are

 Cost of change is lesser but it is not very suitable for

changing requirements.

 More management attention is required.

 System architecture or design issues may arise

because not all requirements are gathered in the

beginning of the entire life cycle.

 Defining increments may require definition of the

complete system.

 Not suitable for smaller projects.

 Management complexity is more.

 End of project may not be known which a risk is.

 Highly skilled resources are required for risk analysis.

 Project‘s progress is highly dependent upon the risk

analysis phase.

3) Spiral: Loopholes associated with spiral are

 Management is more complex.

 End of project may not be known early.

 Not suitable for small or low risk projects and could

be expensive for small projects.

 Process is complex

 Spiral may go indefinitely.

 Large number of intermediate stages requires

excessive documentation.

4) V –Model: Problems with V-model are

 High risk and uncertainty.

 Not a good model for complex and object-oriented

projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at

a moderate to high risk of changing

 Once an application is in the testing stage, it is

difficult to go back and change a functionality

 No working software is produced until late during the

life cycle.

IV. AGILE SOFTWARE DEVELOPMENT LIFE CYCLE

 In software application development, agile software

development (ASD) is a methodology for the creative process

that anticipates the need for flexibility and applies a level of

pragmatism into the delivery of the finished product. Agile

software development focuses on keeping code simple,

testing often, and delivering functional bits of the application

as soon as they're ready. The goal of ASD is to build upon

small client-approved parts as the project progresses, as

opposed to delivering one large application at the end of the

project.

Agile development model is also a type of Incremental model.

Software is developed in incremental, rapid cycles. This

results in small incremental releases with each release

building on previous functionality. Each release is thoroughly

tested to ensure software quality is maintained. It is used for

time critical applications. Extreme Programming (XP) is

currently one of the most well known agile development life

cycle model.

Agile Methodology is a type of project management process.

The agile method anticipates change and allows for much

more flexibility than traditional methods. Clients can make

small objective changes without huge amendments to the

budget or schedule. The process involves breaking down each

project into prioritized requirements, and delivering each

individually within an iterative cycle. An iteration is the

routine of developing small sections of a project at a time.

Each iteration is reviewed and assessed by the development

team and client.

1) The Values and Principles of the Agile Alliance: In

February of 2001, seventeen practitioners of several

programming methodologies came together at a summit

in Utah to discuss the problems of existing

methodologies, the ways to overcome those, and the

values to support agile or lightweight software

development at high level; then they published The Agile

Manifesto with the four main values that were agreed on

as [10]:

 Individuals and interactions over processes and tools

 Working software over comprehensive

documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The Agile Manifesto is based on twelve principles [11]:

AGILE: Software development model

 14 www.erpublication.org

1. Customer satisfaction by rapid delivery of useful

software

2. Welcome changing requirements, even late in

development

3. Working software is delivered frequently (weeks

rather than months)

4. Close, daily cooperation between business people and

developers

5. Projects are built around motivated individuals, who

should be trusted

6. Face-to-face conversation is the best form of

communication (co-location)

7. Working software is the principal measure of progress

8. Sustainable development, able to maintain a constant

pace

9. Continuous attention to technical excellence and good

design

10. Simplicity—the art of maximizing the amount of

work not done—is essential

11. Self-organizing teams

12. Regular adaptation to changing circumstances

2) Different Styles of Agile Software Development

There are several different approaches of Agile Software

Development that focus on different aspects of the projects. In

this chapter, four of the most common ones of these styles,

namely eXtreme Programming, SCRUM, Adaptive Software

Development, Crystal, are presented.

i. eXtreme Programming (XP)

Extreme programming was originally started to be formulated

in 1996 by Kent Beck. And Ron Jeffries, describes the

method as ―Extreme Programming is a discipline of software

development with values of simplicity, communication,

feedback and courage. We focus on the roles of customer,

manager, and programmer and accord key rights and

responsibilities to those in those roles‖. [3, 5]

In contrast to the traditional methods, XP is based on small

releases that are produced periodically, while it places much

importance on customer satisfaction in parallel with

continuous feedback, and thus in XP adopting changes of

specifications is significant. Therefore, this naturally implies

that the testing to obtain satisfying working releases plays a

very crucial role in XP.

These practices help us understand the principles of XP more

precisely.

a) On-site Customer: XP requires the customers to

actively and collaboratively participate to the project

at all times. In this way, the team gains the constant

availability of the customer that can always quickly

provide instructions and answers about the

requirements to the development team.[5]

Fig5. Planning and Feedback Loop in eXtreme

Programming

b) Small Releases: In XP, a project is developed by

iteratively putting small but- tested and -working

releases that are updated periodically. In this manner,

these small releases lead to the early benefit and/or

use to the customer, thus to gain early feedback from

the customer.[5]

c) Planning Game: Inside each release, an Extreme team

plans just a few weeks at a time, with clear objectives

and solid estimates. XP planning works continuously

and iteratively considering the scheduling on the

small releases and the goals for the next releases,

according to the customer. Thus, this rule leads the

customer to steer the development team by choosing

the ideal combination of stories within the time and

the funds available.[5]

d) Metaphor: Metaphor rule aims to define and guide the

development with a simple common story to ensure

each member of the development team is completely

aware of how the entire product works.[4]

e) Pair programming: Pair programming means two

programmers continuously working on the same

code. Pair programming can improve design quality

and reduce defects. This shoulder-to-shoulder

technique serves as a continual design and code

review process, and as a result defect rates are

reduced. This action has been widely recognized as

continuous code inspection.

f) Simple Design: XP developers stress implementing

the simplest possible solution always in all stages.

Hence, XP avoids the complexity and extra code.

Hence, in XP the project is designed in a way as

simple as possible. Beck expresses this idea as

―Developers are urged to keep design as simple as

possible, say everything once and only once.[3]

g) Collective Code Ownership: In XP, the term

collective ownership of a project means that each part

of the code belongs to the whole development team.

Thus, needed improvements on other programmers‘

code can be made by any member of the team while

this also leads to a faster progress and cleaner

code.[5]

h) Coding Standard: In XP, a certain coding standard is

used in order to have a common understanding and

ability to work on the development. Jeffries supports

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 15 www.erpublication.org

this rule as ―Coding standard ensures that the code

communicates as clearly as possible and supports our

shared responsibility for quality everywhere.‖[5]

i) Continuous Integration: Integration of the code is

extremely difficult if it is done once at the entire

development, due to many lines of code and the

difficulty of identifying bugs. Thus, in XP each

completed task is integrated to the system right away,

then the application is built and tested daily several

number of times. In this manner, the system always

stays as completely integrated.[5]

j) Test-Driven Development: The unit tests are kept in an

automated test suite by the programmers; and

whenever they change a section of code, the test suite

is run to observe immediately whether it caused a

problem on what had been working, while the

customer evaluates the new parts and give feedback

right away.[4]

k) Refactoring: Refactoring is the process of improving

the structure of the code without changing its

function. Thus, refactoring aims to keep the design of

the code as simple and understandable as possible, to

avoid duplication, and to add flexibility to the

code.[5]

ii. SCRUM

Ken Schwaber (1996), the pioneer of SCRUM, states that the

development is an unpredictable process, whereas SCRUM

produces breakthrough productivity, enabling building the

best systems possible in complex, unpredictable

environments. Schwaber defines SCRUM as:

‖Scrum is a method that aims to help teams to focus on their

objectives. It tries to minimize the amount of work people

have to spend tackling with less important concerns. Scrum is

a response to keep things simple in the highly complicated

and intellectually challenging software business

environment.‖[9]

SCRUM consists of short, intensive, daily meetings of the

whole project team aiming to deliver as much quality software

as possible within a series of short time boxes called ‖sprints‖

Fig 6 SCRUM Process Stages

Schwaber lists the key principles of SCRUM as follows [9]:

 Small working teams that maximize communication,

minimize overhead, and maximize sharing of tacit,

informal knowledge

 Adaptability to technical or marketplace

(user/customer) changes to ensure the best possible

product is produced

 Frequent ‖builds‖, or construction of executable, that

can be inspected, adjusted, tested, documented, and

built on

 Partitioning of work and team assignments into clean,

low coupling partitions, or packets

 Constant testing and documentation of a product - as it

is built

 Ability to declare a product ―done‖ whenever required

(because the competition just shipped, because the

company needs the cash, because the user/customer

needs the functions, because that was when it was

promised...)

iii. Adaptive Software Development (ASD)

In 1992, Jim Highsmith‘s effort of working on a short interval,

iterative, rapid application development process evolved into

Adaptive Software Development (ASD)

ASD is an agile method that is based on the continuous

change, and is opposed to stable planning, such as Waterfall

approach‘s planning stage. ASD‘s change-oriented life cycle

consists of three main stages as Speculate, Collaborate and

Learn. [6, 17]

 Speculate

Speculate stage of ASD‘s life cycle is used for

initiation and cycle planning, as Highsmith explains

it with the following seven steps:

1. Conduct the project initiation phase.

2. Determine the project time-box.

3. Determine the optimal number of cycles and the

time-box for each.

4. Write an objective statement for each cycle.

5. Assign primary components to cycles.

6. Assign technology and support components to

cycles.

7. Develop a project task list.

 Collaborate

Working software is delivered by concurrent

component engineering in ASD where interaction of

people and management of interdependencies are

crucial for the development as in XP‘s pair

programming and collective code ownership

methods.

 Learn

Learning is an iterative step in ASD applied at the

end of each development cycle, leading to a loop to

adaptive planning for the next cycle and to quality

assurance. Highsmith expresses that result quality

from both the customer‘s perspective and a technical

perspective are learned in this stage, as well as the

functioning of the delivery team and the practices

they are utilizing with project‘s status.

AGILE: Software development model

 16 www.erpublication.org

Fig 7 Adaptive Software Development Change Oriented Life

Cycle

iv. Crystal

Crystal is a family of human-oriented light-weight methods

with efficiency and agility purposes, developed by Alistair

Cockburn in early 1990s. Highsmith states that Crystal

focuses on collaboration and cooperation using project size,

criticality, and objectives to craft appropriately configured

practices for each member of the Crystal family of

methodologies. [6, 17]

The design principles of Crystal can be summarized as:

The team can reduce intermediate work products as it

produces running code more frequently, as it uses richer

communication channels between people.

Every project is slightly different and evolves over time, so

the methodology, the set of conventions the team adopts, must

be tuned and evolve.

Fig 8 The Family of Crystal Methods

V. PROBLEM SOLVED BY AGILE

Here are reasons to apply agile development principles and

practices. [16]

a) Revenue: The iterative nature of agile development

means features are delivered incrementally, enabling

some benefits to be realized early as the product

continues to develop.

b) Speed-to-market: Research suggests about 80% of all

market leaders were first to market. As well as the higher

revenue from incremental delivery, agile development

philosophy also supports the notion of early and regular

releases, and ‗perpetual beta‘.

c) Quality: A key principle of agile development is that

testing is integrated throughout the lifecycle, enabling

regular inspection of the working product as it develops.

This allows the product owner to make adjustments if

necessary and gives the product team early sight of any

quality issues.

d) Visibility: Agile development principles encourage

active ‗user‘ involvement throughout the product‘s

development and a very cooperative collaborative

approach. This provides excellent visibility for key

stakeholders, both of the project‘s progress and of the

product itself, which in turn helps to ensure that

expectations are effectively managed.

e) Risk Management: Small incremental releases made

visible to the product owner and product team through

its development help to identify any issues early and

make it easier to respond to change. The clear visibility

in agile development helps to ensure that any necessary

decisions can be taken at the earliest possible

opportunity, while there‘s still time to make a material

difference to the outcome.

f) Flexibility / Agility: In traditional development projects, we

write a big spec up-front and then tell business owners

how expensive it is to change anything, particularly as

the project goes on. In fear of scope creep and a

never-ending project, we resist changes and put people

through a change control committee to keep them to the

essential minimum. Agile development principles are

different. In agile development, change is accepted. In

fact, it’s expected. Because the one thing that‘s certain in

life is change. Instead the timescale is fixed and

requirements emerge and evolve as the product is

developed. Of course for this to work, it‘s imperative to

have an actively involved stakeholder who understands

this concept and makes the necessary trade-off

decisions, trading existing scope for new.

g) Cost Control: The above approach of fixed timescales

and evolving requirements enables a fixed budget. The

scope of the product and its features are variable, rather

than the cost.

h) Business Engagement/Customer Satisfaction: The

active involvement of a user representative and/or

product owner, the high visibility of the product and

progress, and the flexibility to change when change is

needed, create much better business engagement and

customer satisfaction. This is an important benefit that

can create much more positive and enduring working

relationships.

i) Right Product: Above all other points, the ability for agile

development requirements to emerge and evolve, and

the ability to embrace change (with the appropriate

trade-offs), the team build the right product. It‘s all too

common in more traditional projects to deliver a

―successful‖ project in IT terms and find that the product

is not what was expected, needed or hoped for. In agile

development, the emphasis is absolutely on building the

right product.

j) More Enjoyable!: The active involvement, cooperation and

collaboration make agile development teams a much

more enjoyable place for most people. Instead of big

specs, we discuss requirements in workshops. Instead of

lengthy status reports, we collaborate around a

task-board discussing progress. Instead of long project

plans and change management committees, we discuss

http://www.allaboutagile.com/2007/03/agile-principle-5-how-dyou-eat-elephant.html
http://www.allaboutagile.com/2007/03/agile-principle-6-focus-on-frequent.html
http://www.allaboutagile.com/2007/03/agile-principle-6-focus-on-frequent.html
http://www.allaboutagile.com/2007/04/agile-development-agile-testing-is-not.html
http://www.allaboutagile.com/2007/02/principle-1-active-user-involvement-is.html
http://www.allaboutagile.com/2007/05/beauty-of-not-doing-agile-development.html
http://www.allaboutagile.com/2007/05/beauty-of-not-doing-agile-development.html
http://www.allaboutagile.com/2007/03/agile-principle-3-time-waits-for-no-man.html
http://www.allaboutagile.com/2007/02/principle-1-active-user-involvement-is.html
http://www.allaboutagile.com/2007/03/agile-principle-3-time-waits-for-no-man.html
http://www.allaboutagile.com/2007/03/agile-principle-3-time-waits-for-no-man.html
http://www.allaboutagile.com/2007/02/principle-1-active-user-involvement-is.html
http://www.allaboutagile.com/2007/05/beauty-of-not-doing-agile-development.html
http://www.allaboutagile.com/2007/03/agile-principle-3-time-waits-for-no-man.html
http://www.allaboutagile.com/2007/03/agile-requirements-just-in-time-and.html
http://www.allaboutagile.com/2007/03/agile-requirements-just-in-time-and.html

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-3, March 2015

 17 www.erpublication.org

what‘s right for the product and project and the team is

empowered to make decisions. In my experience this

makes it a much more rewarding approach for everyone.

In turn this helps to create highly motivated, high

performance teams that are highly cooperative.

VI. FUTURE WORK

 As we know that agile is best software development method

but till now agile is not so popular for government projects

and defense projects. In Forrester Research surveys of 1000+

IT professionals in 2009 and in 2010, showed a decline in the

use of ―Traditional‖ development methodologies, and a rise in

adoption of Agile. About 40% of organizations reported using

one or another of the Agile family of methodologies [12,13].

Studies show a wide range of positive effects of Agile: 5% to

61% reductions in cost, 24% to 58% reductions in

development time, and 11% to 83% reductions in product

defects [15].

Despite these results, in the government, and particularly the

defense sector, Agile is resisted. A 2010 study of Agile in

defense software acquisition [14] found that Agile was only

likely to be used in two circumstances: 1) the program is

urgent and mission critical for combat forces and has the clout

to get a waiver from the normal process, or 2) the program is

failing and likely to be canceled. So in future we can analyze

the reason behind this discrimination and what can we do to

solve this problem?

VII. CONCLUSION

 this paper is written after studying many papers on agile

methodology. This paper explains different types of SDLCs

like Waterfall, incremental, spiral, v-model. This paper also

defined problem associated with these traditional SDLCs. In

this paper we explained AGILE method its different–different

approaches namely eXtreme Programming, SCRUM,

Adaptive Software Development, Crystal. And list down the

reasons to apply agile development principles and practices.

To explain this paper there is a table which provides full

review of Agile compared with traditional method.

Traditional Methodology Agile methodology

Requirements are clear at

the inception of the project.

Requirements are not clear

at the inception of the

project.

Limited communication,

more stress in

documentation.

More communication

allows developing a product

over short period of time,

lesser importance on the

documentation.

Elaborate process should be

followed.

Limited process involved.

Time consuming as they

develop the complete

product at a single cycle.

Iterative model allow

developing easily in a short

span of time.

No scrums calls and stand

up calls.

Scrums calls are stand up

calls at a regular interval to

track the progress and get

feedback from the clients.

Time consuming to Save a lot of time due to

understand, develop, test

and defect fixing.

frequent communication

with stack holders, iterative

development and proper

feedback.

Testing happens only after

the completion of the

development.

Testing team work in

parallel with the

development team which

helps to find the defect as

soon as possible.
Automation is not a usual

practice.

Continuous automated testing

which ensures better quality.

Table. 1 Traditional Vs. Agile methodology

REFERENCES

[1] M. A. Awad. A comparison between agile and traditional software

development methodologies. Master‘s thesis, The University of Western

Australia, 2005.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B.

Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D.

Thomas. The twelve principles of agile software, 2001.

[3] K. Beck. Embracing change with extreme programming. Computer,

32(10):70–77, Oct. 1999.

[4] A. Cockburn. Agile Software Development. Addison- Wesley

Professional, 2001.

[5] R. E. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming

Installed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2000.

[6] J. Highsmith. Retiring lifecycle dinosaurs. Software Testing & Quality

Engineering (STQE), pages 22–28, 2000.

[7] K. Schwaber. Controlled chaos: Living on the edge. American

Programmer 9, 5:10–16, 1996.

[8] K. Schwaber. Against a sea of troubles: Scrum software development.

Cutter, 13:34–39, 2000.

[9] J. Sutherland. Agile can scale: Inventing and reinventing scrum in five

companies. Cutter IT Journal, 14:5–11, 2001.

[10] http://www.agilealliance.org/the-alliance/the-agile-manifesto

[11] http://agilemanifesto.org/principles.html

[12] D. West, et al. (2010). ―Agile Development: Mainstream Adoption Has

Changed Agility.‖ Forrester Research.

[13] D. West et al. (2011) ―Water-Scrum-Fall Is The Reality Of Agile For

Most Organizations Today.‖ Forrester Research.

 [14] M. Lapham, et al. (2010) ―Considerations for Using Agile in DoD

Acquisition.‖ Carnegie Mellon, Software Engineering Institute: April

2010, Technical Note CMU/SEI-2010-TN -002.

[15] Rico, D. F. (2008). "What is the return of investment (ROI) of agile

methods?"

[16]http://www.allaboutagile.com/10-good-reasons-to-do-agile-developme

nt/#sthash.Jtxdo8tU.dpuf

[17] J. Highsmith. Agile Software Development

Ecosystems.Addison-Wesley Professional, 2002.

[18]http://en.wikipedia.org/wiki/Systems_Development_Life_Cycle

[19] http://en.wikipedia.org/wiki/Agile_software_development

[20] http://agilemanifesto.org

[21] http://www.agilealliance.org

[22]Lean Software Development: An Agile Toolkit for Software

Development Managers - by Mary Poppendieck, Tom Poppendieck,

Ken Schwaber .

http://www.allaboutagile.com/2007/03/agile-principle-2-agile-development.html
http://www.allaboutagile.com/2007/03/agile-principle-2-agile-development.html
http://www.allaboutagile.com/2007/04/agile-principle-10-no-place-for-snipers.html

