

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 309 www.erpublication.org



Abstract— The Big-data refers to the large-scale distributed

data processing applications that operate on unusually huge

amounts of data. Google’s MapReduce and Apache’s

MapReduce,its open-source implementation, are the defacto

software systems for Large Scale data applications. Study of the

MapReduce framework is that the framework produces a large

amount of intermediatedata. Such existing information is

thrown away after the tasks finish, because MapReduce is not

able to utilize them. In this paper, we propose, a data-aware

cache framework for large data applications. In this paper, tasks

submit their intermediate results to the cache manager. A job

queries the cache manager before executing the actual

evaluation work. A novel cache depiction scheme and a cache

request and reply protocols are designed. We implement Data

aware caching by extending Hadoop.

Index Terms— BigData, Hadoop, JobTracker, MapReduce,

TaskTracker.

I. INTRODUCTION

 MapReduce is a programming model and a software

framework for Large -scale distributed Evaluation on huge

amounts of data. Figure 1 represents the highlevel work flow

of a MapReduce Task. Application developers specify the

evaluation in terms of a map and a reduce function, and the

underlying MapReduce Task enrolling system automatically

parallelizes the computation across a clusters. MapReduce is

popular for its simple programming interface and excellent

interpretation when implementing a large spectrum of

applications. Since most such applications take a huge amount

of input data, known as “Bigdata applications”.

Figure 1: The MapReduce programming model architecture.

as shown in Figure 1, input data is first splitted and then given

to workers in the map stage. separate data items are called

Manuscript received February 24, 2015.

 Devwrat Kumar, Devwrat Kumar pursing engineering in computer

science from PUNE UNIVERSITY.

Chaudhari Mayur, Chaudhari Mayur pursing engineering in computer

science from PUNE UNIVERSITY (Jspm’s Jscoe).

Joshi Piyush, Joshi Piyush pursing engineering in computer science

from PUNE UNIVERSITY (Jspm’s Jscoe).

Kuchekar Vikash, Kuchekar vikash pursing engineering in computer

science from PUNE UNIVERSITY (Jspm’s Jscoe)

records. The MapReduce system parses the input chunks to

each worker and output the records. After the map phase,

intermediate overcome generated in the map phases are

stumbled and arranged by the MapReduce system and are

then given into the reduce phase to workers. Final result is

evaluated by multiple reducers and written back to the disk.

Hadoop is an open source software framework of the Google

MapReduce programming model. Hadoop consist of the

Hadoop Common, which makes availaible access to the file

systems supported by Hadoop. Hadoop Distributed File

System (HDFS) provides distributed file storage and is

optimized for huge unalterable chunk of data. A small

Hadoop cluster will contain a single master and multiple

worker nodes called as slave. The master node runs various

processes, including a TaskTracker and a Name Node. The

TaskTracker is having authority for control on running jobs in

the Hadoop cluster. Whereas Name Node handles the HDFS.

The TaskTracker and the Name Node are normally collected

on the same physical machine. different servers in the cluster

execute a Task Tracker and a Data Node processes. A

MapReduce job is splitted into tasks. Tasks are controlled by

the TaskTracker. The Task Tracker and the DataNode are

collected on the same servers to make availaible data locality

in evaluation. MapReduce makes availaible a standardized

framework for achieveing large-scale distributed

computation, known as, the big-data applications.

Still, there is a limitations of the system, i.e., the inability in

graditional processing. Graditional processing refers to the

applications that expansionally promote the input data and

regularly apply evaluations on the input in order to achieve

output. There are probable duplicate evaluations and

operations being performed in this process. However,

MapReduce does not have the any other technique to identify

such replicate evaluations and accelerate job execution.

provoked by this conclusion, In this paper we advance, a

data-aware cache system for bigdata applications using the

MapReduce framework, which desire at enlarging the

MapReduce framework and supplying a cache layer for

efficiently identifying and accessing cache elements in a

MapReduce job

II. LITERATURE REVIEW

1. Large-scale Incremental Processing Using Distributed

Transactions and Notifications [3]

Daniel Peng et al. recommended, a system for additionally

processing renovate to a bulky data set, and expandd it to

create the Google web search index. By renewing a

batchbased indexing system with an indexing system depend

on incremental processing flow, Auther process the equal

number of records per day.

2. Design and Evaluation of Network-Leviated Merge for

Hadoop Distributed File System for Load Balancing

Using Data Declustering Techniques

Devwrat Kumar, Chaudhari Mayur, Joshi Piyush, Kuchekar Vikash

Hadoop Distributed File System for Load Balancing Using Data Declustering Techniques

 310 www.erpublication.org

Hadoop Acceleration [7]

Weikuan Yu et al. presented, Hadoop-A, an acceleration

framework that enhances Hadoop with plugin components for

rapid data movement, overcoming the existing restrictions. A

novel network-levitated merge algorithm is planned to merge

data without duplication and disk access. In addition, a full

pipeline is arranged to overlap the stumble, merge and

degrade phases. Our experimental overcome shows that

Hadoop-A significantly fast up data movement in MapReduce

and increases the output of Hadoop

3. Improving Mapreduce Performance through Data

Placement in Composite Hadoop Cluster [5]

Jiong Xie et al. presented that ignoring the data locality

problems in composite environments can noticeably reduce

the MapReduce output. In this paper, author addresses the

issues of how to put data across nodes in a way that every

node has a stable data processing load. Given a data explosive

application running on a Hadoop MapReduce cluster, our

data placement method adaptively increases the amount of

data stored in every node to achieve high-level

data-processing enhancement. Experimental outcome on two

real data-intensive applications show that our data placement

scheme can always enrich the MapReduce performance by

rebalancing data beyond nodes before performing a

data-enhance application in a composite Hadoop cluster.

4. Improving MapReduce Performance in Composite

Network Environments and Resource Utilization [6]

Zhenhua Guo et al. proposed, Benefit Aware hypotthetical

fulfillment which predicts the benefit of launching new

hypothetical tasks and greatly removes unnecessary runs of

hypothetical tasks. Finally, MapReduce is mainly improved

for consist environments and its inproficient in composite

network environments has been examined in their

experiments. Authors examine network heterogeneity aware

planning of both map and reduce tasks. Overall, the goal is to

enhance Hadoop to handle with significant system

heterogeneity and advance resource utilization motivation:

MapReduce gives a standardized framework for

implementing big-scale distributed evaluation,known as, the

big-data applications. However, there is a inhibition of the

system, i.e., the inefficiency in incremental processing.

Incremental processing refers to the applications that

additionally grows the input data and normally assign

evaluations on the input in order to generate output.There are

hypothetical duplicate evaluations being performed in this

process. However, MapReduce don't have the technique to

identify such duplicate evaluations and accelerate Task

execution. inspired by this observation, in this paper we

present, a data-aware cache network for big-data applications

using the MapReduce framework, which goals at extending

the MapReduce framework and makes availaible a cache

layer for simply identifying and accessing cache elements in a

MapReduce job

III. NEED

3.1 Cache Description:

Data-aware caching requires all data object to be indexed by

its gratified. In the context of huge scale data applications, this

means that the data contents and the cache description scheme

must narrate the application framework. Although most of the

big-data applications execute on standardized platforms, their

personal tasks perform efficiently distinct operations and

produce several intermediate results. The cache description

method should gives a customizable indexing that empowers

content of their produced biased results. This is a untrivial

task. In the situations of Hadoop, It uses the purify proficiency

makes availaible by the Java language to recoganise the

object that is utilized by the MapReduce to growth the input

data.

3.2 Cache request and reply protocol:

The amount of intermediate data can be very huge. When such

data is demanded by other worker nodes or slave, deciding

how to transport this data turns in to very tangled. Simply for

processing, programs are moved in to the data node i.e. slave

node to run the processing locally. Although, this may not

always happen be applicable since the partiality of the worker

nodes may not be redially changed. To clarify Data locality is

Figure2: High-Level Description Architecture Of The Data

Aware Caching

To clarify Data locality issues, the protocol should be able to

collect cache elements with the worker processes likely that

demand the data, so that the channeling delay and overhead

are reduces. In this paper, we propose a novel cache

explanation scheme. A high-level explanation is presented in

Figure 2.

This scheme analyzes the source input from which a cache

member is acquired, and the actions applied on the input, so

that a cache elements produced by the workers in the map

phase is indexed efficiently. In the reduce phase, we design a

another technique to take into consideration the minimal

actions are applied on the output in the map phase,also

represent a method for reducers to exploit the cached

overcome in the map phase to increase the performance of the

MapReduce job. We untensil data aware caching in the

Hadoop project by advancing the compatible components.

Our execution follows a non-invasive approach, so it only

requires minimal changes to the application code

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 311 www.erpublication.org

IV. MAP PHASE CACHE DESCRIPTION SCHEME

Cache relates to the intermediate data that is formed by

worker nodes through the execution of a MapReduce task. A

member of cached data is saved in a Distributed File System

(DFS). The gratified of a cache members is defined by the

actual data and the actions applied. Formally, a cache member

is explained by a 2-tuple: fOrigin, Operation. Origin act as

same name of a file in the DFS.

Operation is a linear list of available jobs performed on the

Origin file. For example,the word count problem, all mapper

node/process release a list of fword, countg tuples that record

the count of each word in the file that the mapper processes.

Data aware caching stores this list to a file. This file becomes

a cache elements. Given an actual input data file, word list

013546780.txt, the cache element is explained by fword list

0135467800.txt, elements countg. Here, element invoke to

white-space-separated character strings.The new line

character is also judged as one of the white spaces, so element

specifically put the word in a text file and element count

directly agree to the word count operation acheived on the

data file. The actual format of the cache explation of several

applications varies to their specific semantic contexts

accordingly. This can be designed and completed by

application developers who are pledged for acheiving their

MapReduce tasks. In our model, we present various

supported operations:

_ Item Count: This functionality used to calculate of all

existance of each item in a file. The items are

separated by a user defined separator.

_ Sort: This functionality sorts the records of the file. The

comparison operator is explained on two elements and returns

the sequence of priority.

_ Selection: This functionality picks an elements that meets a

given criterion. It could be an sequence in the list of elements.

A selection action involves choosing the median of a linear

list of the given elements.

_ Transform: This functionality transform all elements of the

input file into a another format. The transformation is defined

further by the other information in the functional explation.

This can only be makes availaible by the application

developers.

_ Categorization: This functionality utilized to classify the

elements in the input file into multiple groups. This can be an

exact categorization, where a deterministic categorization

criterion is applied sequentially on every elements, or an

approximate categorization, where an iterative categorization

process is enforced and the iteration count should be

recorded. Cache explanation can be recursive. For example,in

sequential processing, a data file could be processed by

various worker processes.then a cache elements, produced by

the final process, could be from of the intermediate overcome

files of previous worker nodes,also its explanation will be

gathered together to form a recursive explation. Whereas this

recursive explanation could be developed to an iterative one

by directly attaching the later functionalites to the older ones.

Still, this iterative explanation loses the context information

about the later functionalities, if another process is

functioning on a later cache elements and is looking for

possible cache that could save its own functionalities. By

inspecting an iterative explanation, one cannot differentiate

among a later on cache elements and a previous one because

the origin of the cache elements is the one that was fed by the

application developers.The worker processes will not be able

to identify the correct cache elements, even if the cache

elements is present in cache manager

V. REDUCE PHASE CACHE EXPLATION SCHEME:

The input for the reduce phase is a pairs of key-value,where

the value can be a list of values.The scheme utilize for the map

phase cache explanation, the actual input and the applied

actions are required. The actual input element is restored by

storing the intermediate overcome of the map phase in the

DFS. The implemented jobs are recoganized by unique IDs

that are specified by the users. The cached results, dissimilar

those are generated in the Map phase, can't be used as the final

throughput. This is because of an additional method,

intermediate results are formed in the Map phase are

combined in the shuffle phase, which causes a mismatch

among the actual input and the currently generated input. A

solution of this problem is apply a minimal explanation of the

actual input in the reduce stage. The explanation should

include the actual data files generated in the Map stage. For

example, two data files, “fileX.data” and “fileY.data”, are

shuffled to produce two input files, “inputX.data” and

“inputY.data”,for two reducers. “inputX.data” and

“inputY.data” should include “fileX.data” and “fileY.data” as

its shuffling source. As a result, new intermediate data files of

the Map phase are formed during additional processing; the

shuffling input will be recoganized in a same way. The

reducers can recognize new inputs from the shuffling sources

by shuffling the currently-generated intermediate overcome

from the Map phase to form the final results. For example,

assume that “inputZ.data” is currently generated results from

Map phase; the shuffling results “fileX.data” and “fileY.data”

includes a new shuffling source, “inputZ.data”. A reducer can

recoganize the input “fileX.data” as the result of shuffling

“inputX.data”, “inputY.data”, and “inputZ.data”. The final

results of shuffling the output of “inputX.data” and

“inputY.data” are obtained by querying the cache manager.

The appended shuffling output of “inputZ.data” is then

appended to get the new results. Given the above explanation,

the input given to the reducers is not cached wholly. Only a

some part of the input is same to the input of the cache

elements. The remaining is from the product of the additional

processing phase of the map phase. If a reducer can combine

the cached partial results with the results aquired from the new

inputs and substantially reduce the overall evaluation time,

reducers should cache partial results. This property is

examined by the jobs executed by the reducers.

VI. HADOOP MAP-REDUCE

6.1 Apache Hadoop

Apache Hadoop is an open-source software platform for

storage and handling of large-scale data-sets on clusters of

commodity hardware. 'Map-Reduce' is a framework for

handling parallelizable issues across large datasets using a

large number of nodes, collectively called as a grid or a

cluster . Evaluation processing can appear on data stored

either in unstructured or in a structured database.

Map-Reduce can take favored of data locality, processing it

on or adjacent the storage assets in order to reduce the

distance of transmitted. "Map" step: Input is given to the

master node. Master node divides it into smaller

Hadoop Distributed File System for Load Balancing Using Data Declustering Techniques

 312 www.erpublication.org

sub-problems and then distributes them to worker nodes. If

required A worker node may again further sub-divide it which

leads to a multi-level tree structure. The worker node

processes the smaller sub-problem, and gives the response to

its master node. "Reduce" step: The master node accumulates

the overcome of all the sub-problems and merge them to form

the output which is the result to the actual problem it was

trying to solve. Map Reduce acknowledges for distributed

processing of the map and reduction jobs, where mapping

functionality is independent of the others, all maps can be

performed in parallel. Similarly, a set of 'reducers' can

perform the reduction phase, if and only if all outputs of the

map job that share the same key with to the same reducer at

the same time.Bigger dataset is used in Map Reduce,

commodity server handle peta byte of data in few hours. If one

mapper or reducer fails, then rescheduled is used to suppose

the input data is still available.

6.2 Task Tracker: the Map-Reduce engine

The Map-Reduce engine contains one JobTracker, to which

client applications submit MapReduce jobs. The JobTracker

transmits work request to number of TaskTracker nodes in the

group of nodes. works are process near to worker node to

achieve high data locality. A rack-aware file system is used,

the JobTracker maintain information about node which

contains the data, and which is nearby machines. If the work

can't be performed on the actual node where the data resides,

priority is given to nodes in the same rack in rack aware file

system. This reduces network traffic on the main backbone

network.Task is rescheduled if the tasktracker fails or times

out. To check the status of TaskTracker, TaskTracker send a

heartbeat to the JobTracker in every few minutes.

6.3 Map cache:

Apache Hadoop is an open-source application of originally

started by Google, is the MapReduce distributed parallel

processing framework. In Map phase input is splitted into

multiple file splits which are processed by an equal number of

Map worker process, who achieve a data-parallel processing

procedure. As explained in Figure. 3, a file splited according

to users specification.

999

Figure 3: Map Phase A file in a DFS.

The intermediate results obtained by processing file splits are

then cached. Each file split is identified by the original file

offset,size and name. This originates complications in

describing cache members. Further this scheme is slightly

altered to work for the general situation, In which The original

field of a cache item is changed to a 3-tuple of file name,

offset, size. A file split cannot cross file borders in Hadoop

MapReduce, which simplifies the explanation scheme of

cache elements. Map cache elements can be aggregated by

grouping file splits. Original input file generate Multiple

cache members from the same original file in the DFS are

grouped under the path of the original file, i.e. offset,file

name, sizeg.Using this approach it optimize the actual storage

of aggregated cache items .So Map cached item can be placed

on a single data node in the HDFS cluster which refrain costly

queries to multiple data nodes

6.4 Reduce cache

Cache depiction contain the file splits from the map phase.

The input given to the reducers is from the whole input of the

MapReduce job. thus, further clarify the description by

applying the file name with a version number to describe the

original file to the reducers. The version number of the input

file is used to differentiate incremental changes to input file. A

genuine approach is to encrypt the size of the input file is

included with the file name. Since incremental

changes,attaching new data at the end of the file.the file size is

enough to recognize the changes made during different

MapReduce jobs. Note that even the entire output of the input

files of a MapReduce Task is used in the reduce phase, splited

file can still be aggregated, i.e., by using the form of ffile

name, split, splitg. As shown in Figure. 4,

Figure 4:Architecture Of Reducer.

input for the reducers is produced by file spliting, sorting and

shufflng. fundamentally this process is implicitlycontrolled by

the MapReduce framework, the users specify a shuffling

method by supplying a partitioner, which is enforced as a Java

object in Hadoop.

VII. PROTOCOL

7.1 Relationship among Task types and cache organization

The fractional results generated in the map and reduce phases

can be used in different scenarios. There are two kind of cache

items: the map cache and the reduce cache. They have

different types of complexities under different

scenarios.Cache items in the map phase are very easy to share

because the operations applied are well-designed. When

processing each file split, the cache manager reports the

previous file splitting scheme used in its cache elements. The

new

MapReduce Task urgency to split the files according to the

same splitting scheme in way to utilize the cache items.

However, if the new MapReduce Taskuses different file

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 313 www.erpublication.org

splitting scheme, the map results cannot be used directly,lest

the operations applied in the map phase are context

free. By context free, we mean that the operation only

produces results based on the input records which does not

consider the file split scheme. This is normally true. When

considering cache sharing in the reduce phase, we identify

two normal situations. The first when the reducers complete

different jobs from the cached reduce cache items of the

earlier MapReduce jobs are shown in Figure. 5. In this case,

after the mappers submit the results obtained from the cache

items, the MapReduce framework uses the practitioner

handover by the new MapReduce

Taskto feed input to the reducers. The saved evaluation is

obtained by discarding the processing in the Map

phase.Usually, new content is added at the end of the input

files, which requires further mappers to process.However, this

does not require supplementry processes other than those

introduced above.

The second condition is when the reducers can actually take

benifit of the previously-cached reducing cache items as

illustrated in Figure. 6. Using those description scheme, the

reducers determine how the output of the map phase is

shuffled. The cache manager automatically identifies the

best-matched cache elements to feed each reducer, which is

the one with the maximum overlap in the genuine input file in

the Map phase.

Figure 5: Map with same map task and different reduce tasks

Figure 6: The situation where two MapReduce jobs have the

same map and reduce tasks.

7.2 Cache item submission

Mapper and reducer processes record cache items into their

local storage space. When these operations are completed, the

cache items are forwarded to the cache manager, which acts

like a broker in the publish/subscribe paradigm. The cache

manager records the description and the file name of the cache

item in the DFS. The cache element should be bring on the

same machine as the worker process that generates it. This

requirement improves data locality.The cache manager

maintains a replica of the mapping among the cache

descriptions and the file names of the cache elements in its

main memory to accommodate fastest reply to queries. It also

takes backup of the mapping file into the disk periodically to

escape permanently losing data.A worker process contacts the

cache manager eachtime before it begins processing an input

data file. Theworker process sends the file name and the

procedures that it plans to apply to the file to the cache

manager. The cache manager get this message and compares

it with the stored mapping data. If there is a exact match to a

cache item, i.e., its origin is the same as the file name of the

request and its procedures are the same as the proposed

operations that will be performed on the data files, then the

manager will send back a reply containing the temporary

description of the cache item to the worker process. The

worker process receives the temporary description and

fetches the cache item. For more processing, the worker

urgency to send the file to the next-stage worker

processes.The mapper needs to notify the cache manager that

it already processed the input file splits for this job. Then the

cache manager reports these results to the next phase

reducers. If the reducer do not utilize the cache service, the

output in the map phase can be directly shuffled toform of the

input for the reducers. Otherwise, more entangled process is

executed to obtain the required cache items; this will be

explained in next part. If the

proposed procedures are different from the cache items in the

manager’s records, there are situations where the source of the

cache item is the same as the requested file,and the operations

of the cache item are a rigorous subset of the proposed

operations. The concept of a strict super set indicate to the fact

that the item is obtained by applying some additional

operations on the subset item. For example, an item count

operation is a strict subset operation of an item count obeyed

by a selection operation. This case means that if we have a

cache item for the first procedure, we could just add the

selection operation, which guarantees the correctness of the

operation. One of the benefits of Data aware caching is that it

automatically supports the incremental

processing.Incremental processing indicates that we have an

input that is partially different or only has a less amount of

additional data. To perform a previous operation on this new

input data is troublesome in traditional MapReduce, because

MapReduce does not provide the tools for eagerly expressing

such incremental operations. Usually the operation needs to

be executed again on the new input data, or the application

developers need to manually cache the saved intermediate

data and pick them up in the incremental processing. In Data

aware caching, process is standardized and specified.

Application developers have power to express their intentions

and operations by using cache explanation and to request

Hadoop Distributed File System for Load Balancing Using Data Declustering Techniques

 314 www.erpublication.org

intermediate outcome through the dispatching service of the

cache manager.

7.2.1 Lifetime management of cache item:

The cache manager needs to compute how much time a cache

item could be kept in the DFS. Holding a cache elements for

an undefined amount of time will waste storage space when no

another MapReduce task utilizing the intermediate results of

the cache item. There are two types of schemes for

determining the lifetime of a cache element, as listed below.

The cache manager also can promote a cache item to a

permanent file and store it in the DFS, which happens when

the cache elements is used as the final result of a MapReduce

task. In this case, the lifetime of the cache item is no longer

managed by the cache manager. The cache manager still

maintains the mapping among cache explanations and the

actual storage location.

7.2.2 Fixed storage quota:

Data aware caching allocates a fixed volume of storage space

for storing cache items. Old cache items need to be discarded

when there is no enough storage space for storing new cache

items. The removal policy of old cache items can be shaped as

a classic cache replacement problem. In this paper

preliminary implementation, the Least Recent Used (LRU) is

occupied. The cost of allocating a fixed storage quota can be

determined by a pricing model that captures the budgetary

expense of using that amount of storage space. Such pricing

models are available in a public Cloud service.

7.2.3 Optimal utility:

Increasing the storage space of cache elements, a utility-based

measurement can be used to determine by an optimal space

allocated for cache items which maximize the advantage of

Data aware caching and tribute the constraints of costs.This

approch estimates the saved evaluation time, ts, by caching a

cache elements for given amount of time, ta. These two

variables are used to derive the budegtary gain and cost. The

net profit, i.e., the difference of subtracting cost from gain,

should be formed positive. To achieve this, an accurate

pricing model of evaluational resources is required. Although

traditional computing infrastructures do not offer such a

model, cloud computing offer. Budgetary values of

computational resources are well captured in existing cloud

computing services, for example, in Google Compute Engine

and Amazon AWS.For severl organizations that rely on a

cloud service provider for their IT infrastructure, that would

be a perfect model. According to the official report from

AmazonAWS, the amount of organizations that are actively

using their services is huge, which help them to achieve near

billion dollar revenue. Therefore, this cost model should be

very useful in real-world utilization. On the other hand, for

organizations that rely on their own private IT infrastructure,

this model will be inaccurate and should only be used as a

reference.

Expensets= Pstorage × Scache × ts(1)

Savets = Pcomputation × Rduplicate × ts(2)

Equations (1) and (2) show how to compute the expense of

storing cache and the corresponding stored expense in

computation. The details of computing the variables

introduced above are as follows. The profit of storing a cache

item for ts amount of time is computed by accumulating the

charged expenses of all the stored computation tasks in ts. The

number of the same task that is submitted by the user in ts is

estimated by an exponential distribution. The mean of this

exponential distribution is obtained by sampling in history. A

freshly generated cache elements requires a bootstrap time to

do the sampling. The cost is directly computed from the

charge expense of storing the item for ta amount of time. The

optimal lifetime of a cache item is the greatest ta, such that the

profit is positive. The overall benefits of this scheme are that

the user will not be charged more and at the same time the

computation time is decreased, which in turn decreases the

response time and increases the user satisfaction.

7.3 Cache request and reply

7.3.1 Map cache:

There are distinct complications that are caused by the actual

designs of the Hadoop MapReduce framework. The first is,

when do map phase issue cache requests? As described

above, map cache items are identified by the data chunk and

operations performed. In order to protect the original splitting

scheme, cache requests must be sent out before the file

splitting phase. The jobtracker, which is the significant

controller that manages a MapReduce job,issues cache

requests to the cache manager. The cache manager replies a

list of cache explanations. Then the jobtracker splits the input

file on remaining file section that have no corresponding

outcomes in the cache items. That is,the jobtracker urge to use

the same file split scheme as the one used in the cache

elements in order to literaly utilize them. In this scenario, the

new appended input file should be split among the same

number of map phase tasks, so that it will not quiet slow the

entire MapReduce Task down.Then their results are

combined together to form an aggregated Map cache item; to

achive this nested results MapReduce job is used.

7.3.2 Reduce cache:

The cache request process is more entangled. The first step is

to examine the requested cache item with the cached items in

the cache manager’s database. The cached results in the

decrease phase may not be directly used due to the

incremental changes. As a outcome, the cache manager

needs to recognize the overlaps of the original input files of

the requested cache and stored cache. In our initial

implementation, this is done by performing a linear scan of

the stored cache members to find the one with the maximum

overlap with the request. While comparing the request and

cache item, the cache manager first identifies the petitioner.

The practitioner in the request and the cache item has to be

identical, i.e., they should use the same number of reducers

and same partitioning algorithm .This requirement is

illustrated in Figure. 7. The overlapped part is mechanism that

a part of the processing in the reducer could be saved by

aquiring the cached results for that part of the input. The

incremented part, still, will need to be processed by the

reducer itself. The final conclusion are generated by merging

both parts. The actual method of merging results is

determined by the user.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 315 www.erpublication.org

VIII. CONCLUSIONS

This paper present shows the design and evaluation of a data

aware cache framework that requires minimal change to the

actual MapReduce programming model for arranging

incremental processing for Big data applications using the

MapReduce model. This paper propose, a data-aware cache

description scheme, protocol, and architecture. This Paper

Presented method requires only a slight modification in the

input format processing and task management of the

MapReduce framework. As a result, application code only

requires slight changes in order to utilize Data in data aware

caching. This paper appliance it in Hadoop by extending

relevant components. In the future, we plan to adapt our

framework to more general application scenarios and

appliance the scheme in the Hadoop project.

REFERENCES:

[1] Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A Data Aware Caching

for Big- Data Applications Using the MapReduce Framework” ,

TSINGHUA SCIENCE AND TECHNOLOGY ISSN 1007-0214

05/10 Volume 19, Number 1, pp 39- 50, February 2014

[2] Hadoop, http://hadoop.apache.org/,2013

[3] D. Peng and f. Dabek,”Large Scale incremental Processing using

distributed Transaction and notification”, in Proc. of OSDI’2010,

Berkeley, CA, USA, 2010

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving Mapreduce performance in heterogeneous

environments”,in Proc. of OSDI’ 2008, Berkeley, CA, USA, 2008

[5] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, “Improving

MapReduce Performance through Data Placement in Heterogeneous

Hadoop Clusters”,

[6] Amawon web services, http://aws.amazon.com/, 2013.
[7]Google compute engine, http://cloud.google.com/

Products/computeengine.html, 2013

AUTHORS:

Devwrat Kumar, Devwrat Kumar pursing engineering in computer

science from PUNE UNIVERSITY.

Chaudhari Mayur, Chaudhari Mayur pursing engineering in computer

science from PUNE UNIVERSITY (Jspm’s Jscoe).

Joshi Piyush, Joshi Piyush pursing engineering in computer science

from PUNE UNIVERSITY (Jspm’s Jscoe).

Kuchekar Vikash, Kuchekar vikash pursing engineering in computer

science from PUNE UNIVERSITY (Jspm’s Jscoe)

