

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 254 www.erpublication.org



Abstract— Today most recursive descent parsers are

generated by providing grammars and generating parsers

according to these grammars. An alternative approach to

constructing parsers consists of parser combinators, which do

not need a separate step to generate the parser, and furthermore

claim to be clear and simple in use. Despite these claimed

advantages, parser combinators have not been widely adopted

and are rarely actually compared to parser generators.

Presently there are a lot of XML parsers, and many of them

evolve, improve and become complicated. Though all parsers

provide the same purpose, they differ in conditions of

specification, performance, reliability and also conformance to

standards. If a appropriate choice has been not made, it is very

much possible to leads to the trouble of unnecessary hardware

requirement, which will result in productivity degradation.

Index Terms—XML parsers, parsers, parsers combinators.

I. INTRODUCTION

A tool that supports us in getting an overview of a software

system must somehow translate that system into a model. This

translation is a challenging point. Someone must write a

parser that can translate that software system into the model

he wants to support. So, the maintainers of such tools must

provide a parser for every programming language they want

to support. But it is not only the number of languages that is a

problem. A language itself also evolves. A parser that works

with a specific version and/or dialect could not work with the

next version anymore.

A parser does two things while processing its input:

1. Split the input into tokens.

2. Find the hierarchical structure of the input.

Figure 1: The way from source code to a model.

Manuscript received February 20, 2015.

Mr.Amitesh Saxena, Ph.D. Scholar, Pacific University, Udaipur

Mrs. Snehlata Kothari, H.O.D. IT Department, Pacific University,

Udaipur

A common activity within computer science is the analyzing

of tokens, called parsing. Contemporary parsers are

constructed by means of parser generators and to a lesser

extent by parser combinators. Although parser generators are

the standard approach to constructing parsers, they are not

always the easiest method. Parser combinators have long

claimed to be more intuitive and easier in use than their

generating counterpart.

II. DIFFERENT PARSER AND PARSING TECHNIQUE

There are different levels of parsing. They go from „Lexical

Analysis‟ to „Precise Parsing‟. Between these two barriers

there is „Fuzzy Parsing‟, „Island Grammars‟, „Skeleton

Grammars‟ and „Error Repair.

Figure 2: overview of parsing process

a) Fuzzy Parsing

Most reengineering frameworks use a form of fuzzy parsing in

order to support more programming languages or more

dialects of the same programming language. The goal of a

fuzzy parser is the extraction of a partial source code model

based on a syntactical analysis. The key idea of fuzzy parsing

is that there are some anchor terminals. The parser skips all

input until an anchor terminal is found and then context-free

analysis is attempted using a production starting with the

found anchor terminal

b) Island Grammars

With island grammars we get tolerant parsers. An island

grammar is a grammar that consists of detailed productions

describing certain constructs of interest (the islands) and

liberal productions that catch the remainder (the water). By

varying the amount and details in productions for the

constructs of interest, we can trade off accuracy,

completeness and development speed. There are some

different versions of island grammars known besides the one

that we just defined [MOON 01]. Leon Moonen speaks of the

following:

Comparision of Different Types of Parser and Parsing

Techniques

Mr.Amitesh Saxena, Mrs. Snehlata Kothari

http://en.wikipedia.org/wiki/File:Parser_Flow.gif

Comparision of Different Types of Parser and Parsing Techniques

 255 www.erpublication.org

• Lake grammar: When we start with a complete grammar of a

language and extend it with a number of liberal productions

(water) we get a lake grammar. Such a grammar is useful

when we want to allow arbitrary embedded code in the

program we want to process.

• Islands with lakes: This is a mix of productions for islands

and water. We can specify nested constructs as islands with

lakes.

• Lakes with islands: This is another mix of productions for

islands and water.

III. MARKUP LANGUAGES USED IN PARSING

A. Standard Generalized Markup Language (SGML)

It deals with the structural markup of electronic documents.

The basic SGML document consists of a DTD or Document

Type Declaration, one of several top level elements

(otherwise known as tags or markups), paragraphs and text.

The top level element should be a <book>, <chapter>,

<article>, or <sect1>, depending on the type of document you

are writing. We will be using <article> for our documents.

Here is an example of a simple SGML document.

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook

V3.1//EN">

<article>

 <sect1 id="introduction"><title>Hello world

introduction</title>

 <para>

 Hello world!

 </para>

 </sect1>

</article>

Notice on the document that how we commented out the

license using the <!-- and the -->. This is important; if you

forget this you will get all kinds of errors when you run the file

through the SGML parser. This information will not be

viewable once you build it. The reason it is not viewable is the

parser thinks it's just a comment (and it is!) so it just drops it

out of the final parsed document.

B. Hyper Text Markup Language (HTML)

HTML is not a programming language, but rather

a markup language. If you already know XML, HTML will be

a snap for you to learn. We urge you not to attempt to blow

through this tutorial in one sitting. Instead, we recommend

that you spend 15 minutes to an hour a day practicing HTML

and then take a break to let the information settle in. We aren't

going anywhere! .HTML hasn't been around for many years.

HTML is a markup language for describing web documents

(web pages).

 HTML stands

for Hyper Text Markup Language

 A markup language is a set of markup tags

 HTML documents are described by HTML

tags

 Each HTML tag describes different document

content

C. Extensible Markup Language (XML)

Extensible Markup Language (XML) is a markup

language that defines a set of rules for encoding documents in

a format that is both human-readable and machine-readable.

It is defined in the XML 1.0 Specification produced by

the W3C, and several other related specifications, all

free open standards. The design goals of XML emphasize

simplicity, generality, and usability over the Internet. It is a

textual data format with strong support via Unicode for

different human languages. Although the design of XML

focuses on documents, it is widely used for the representation

of arbitrary data structures, for example in web services.

Many application programming interfaces (APIs) have been

developed to aid software developers with processing XML

data, and several schema systems exist to aid in the definition

of XML-based languages.

XML declaration

XML documents may begin by declaring some information

about themselves, as in the following example:

<? xml version="1.0" encoding="UTF-8"?>

XML is used for structuring the data. The Structured data

includes things like spreadsheets, address books,

configuration parameters, financial transactions, and

technical drawings. XML is a set of rules (you may also think

of them as guidelines or conventions) for designing text

formats that let you structure your data. XML is not a

programming language, and you don't have to be a

programmer to use it or learn it. XML makes it easy for a

computer to generate data, read data, and ensure that the data

structure is unambiguous. XML avoids common pitfalls in

language design: it is extensible, platform-independent, and it

supports internationalization and localization. XML is

fully Unicode-compliant.

XML has come into common use for the interchange of data

over the Internet. IETF RFC 7303 gives rules for the

construction of Internet Media Types for use when sending

XML. It also defines the media

type‟s application/xml and text/xml, which say only that the

data are in XML, and nothing about its semantics. The use

of text/xml has been criticized as a potential source of

encoding problems and it has been suggested that it should be

deprecated. RFC 7303 also recommends that XML-based

languages be given media types ending in +xml; for

example image/svg+xml for SVG. Further guidelines for the

use of XML in a networked context may be found in RFC

3470, also known as IETF BCP 70 a document which covers

many aspects of designing and deploying an XML-based

language.

XML parsers

Oracle provides XML parsers for Java, C, C++, and PL/SQL.

This chapter discusses the parser for Java only. Each of these

parsers is a standalone XML component that parses an XML

document (and possibly also a standalone document type

definition (DTD) or XML Schema) so that they can be

processed by your application. In this chapter, the application

examples presented are written in Java

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data
http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Application_programming_interfaces
http://en.wikipedia.org/wiki/XML_schema
http://www.unicode.org/
http://en.wikipedia.org/wiki/History_of_the_Internet#Internet_Engineering_Task_Force
http://tools.ietf.org/html/rfc7303
http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Semantics
http://tools.ietf.org/html/rfc7303
http://en.wikipedia.org/wiki/SVG
http://tools.ietf.org/html/rfc3470
http://tools.ietf.org/html/rfc3470

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 256 www.erpublication.org

Figure 3 XML Parser for Java

IV. DOCUMENT OBJECT MODEL [DOM]

The Document Object Model (DOM) is a cross-platform and

language-independent convention for representing and

interacting with objects in HTML,

XHTML and XML documents. Objects in the DOM tree may

be addressed and manipulated by using methods on the

objects. The public interface of a DOM is specified in its

application programming interface (API). The history of the

Document Object Model is intertwined with the history of the

"browser

Figure 4 DOM Model

wars" of the late 1990s between Netscape Navigator and

Microsoft Internet Explorer, as well as with that

of JavaScript and JScript, the first scripting languages to be

widely implemented in the layout engines of web browsers.

The XML DOM is:

 A standard object model for XML

 A standard programming interface for XML

 Platform- and language-independent

 A W3C standard

Parsing

Parsing can also be used as a linguistic term, for instance

when discussing how phrases are divided up in garden path

sentences. Parsing is also an earlier term for the diagramming

of sentences of natural languages, and is still used for the

diagramming of inflected languages, such as the Romance

languages or Latin. Parsing is a common term used in

psycholinguistics when describing language comprehension.

In this context, parsing refers to the way that human beings,

rather than computers, analyze a sentence or phrase (in

spoken language or text) "in terms of grammatical

constituents, identifying the parts of speech, syntactic

relations, etc." This term is especially common when

discussing what linguistic cues help speakers to parse

garden-path sentences. In computing, a parser is one of the

components in an interpreter or compiler that checks for

correct syntax and builds a data structure (often some kind of

parse tree, abstract syntax tree or other hierarchical structure)

implicit in the input tokens.

Figure 5:- parsing modal

Proposed work of research

I will try to find out the difference between processing

performance of XML DOM parsing by using three operating

systems

Node Time pt1 Time pt2 Time pt3

Node 1 pt1-t1 pt2-t1 pt3

Node 2 pt1-t2 pt2-t2 pt3

Node 3 pt1-t3 pt2-t3 pt3

Node 4 pt1-t4 pt2-t4 pt3

Proposed modal for analysis

Figure 6 Proposed Modal

http://en.inforapid.org/index.php?search=Document%20Object%20Model
http://en.inforapid.org/index.php?search=HTML
http://en.inforapid.org/index.php?search=HTML
http://en.inforapid.org/index.php?search=XML
http://en.inforapid.org/index.php?search=Document%20Object%20Model
http://en.inforapid.org/index.php?search=JavaScript
http://en.inforapid.org/index.php?search=JScript
http://en.inforapid.org/index.php?search=Web%20browser
http://en.inforapid.org/index.php?search=Parsing

Comparision of Different Types of Parser and Parsing Techniques

 257 www.erpublication.org

V. CONCLUSION

I am working on the parsing technique to find the best parsing

technique for different operating system. I have displayed the

working modal of my research. We use Descriptive statistics

along with 1x3 factorial ANOVA Technique and for the

comparison mean, SD, z-test, t- test have been performed for

data analysis.

REFERENCES

[1] Extensible Markup Language, http://www.w3.org/TR/REC-xml.

[2] OASIS, http://www.oasis-open.org.

[3] Juancarlo Anez, "Java XML Parsers-A Comparative Evaluation of 7

Free Tools," Java Report Online, February 1999.

[4] Michael Claben, XML Parser Comparison,

http://www.webreference.com/xml/column22/index.html. Feb

1999.

[5] Clark Cooper, Summary of XML Parser Performance Testing

http://www.xml.com/lpt/a/Benchmark/exec.html. May 05, 1999.

[6] Mohseni, P., “Choose Your Java XML Parser”, 2001,

http://www.devx.com/xml/Article/16921.

[7] Karre, S. and Elbaum, S., “An Empirical Assessment of XML

Parsers”, 6th Workshop on Web Engineering, 2002, pp. 39-46.

[8] Noga, M., Schott, S., L¨owe, W. (2002): Lazy XML Processing. In

ACM DocEng, ACM Press, New York, 2002.

[9] Y. Oren, “SAX Parser Benchmarks”, http://piccolo.

sourceforge.net/bench.html, 2002.

[10] Nicola M. and John J. (2003): XML parsing: a threat to database

performance. CIKM 2003: 175-178.

[11] Elliotte, R.H., “SAX Conformance Testing”, XML Europe, 2004.

[12] Van Engelen, R. (2004): Constructing finite state automata for high

performance XML web services. In Proceedings of the International

Symposium on Web Services (ISWS), 2004.

[13] Takase T., Miyashita H., Suzumura T., and Tatsubori M. (2005): An

adaptive, fast, and safe XML parser based on byte sequences

memorization. WWW 2005: 692-701.

[14] Sosnoski, D.M., “XMLBench”, 2005

http://www.sosnoski.com/opensrc/xmlbench.

[15] XMLJ News Desk, “Journal Readers choice Award”, 2004

http://xml.sys-con.com/read/44008.htm.

[16] E. Perkins, M. Kostoulas, A. Heifets, M. Matsa, and N. Mendelsohn,

“Performance Analysis of XML APIs”, in XML 2005 Conference

proceeding, 2005.

Name:- Mr. Amitesh Saxena

Qualifiaction:- M.tech,Phd(Pursuing)

Phd Scholar , Pacific University, Udaipur

Mrs. Snehlata Kothari

Qualification :- Phd

HOD(IT) at Pacific University Udaipur

