

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

234 www.erpublication.org

Automated Test Data Generation Process Through Path

Testing For Aspect Oriented Programming

Juhi Khandelwal, Pradeep Tomar

Abstract— Aspect-Oriented Programming (AOP) is a new

programming paradigm that mainly focuses on the cross cutting

concerns and implements them in form of Aspects. However, these

Aspects are hard to deal in many stages of Software Development

Life Cycle (SDLC) especially in software testing. Testing main aim

is to achieve high code coverage to improve the software quality.

High code coverage requires lots of test data and it is not feasible to

generate those test data manually. Test data generation process can

be automated with the help of various techniques and framework.

This paper provides review of some of the recent work that has

been done in the area of AOP test data generation. Based on those

work, this work propose an process for generating test data for

AOP using Genetic Algorithm (GA).

Index Terms—Genetic Algorithm, Automated Test Data

Generation, Path Testing

I. INTRODUCTION

Software testing is an important part of SDLC. It is the only way

to assure the quality of a system. Software testing is basically of

two types: Black-box testing and White-box testing. Black-box

testing only concentrates on the input and the output of the

system and not on how the inputs are being processed in the

system. On the other hand, White-box testing take cares of the

structure of the code along with the input and output. Structure

of the code is the logic that has been implemented in the source

code. Thus, in White-box testing test cases tries to achieve

maximum logic coverage, as it is inversely proportion to the

number of bugs in the software. Code coverage is an approach to

measure the extent to which a system has to be tested with a

particular test suite. Basis path testing is the structural testing

which tries to achieve the code coverage with the help control

structure of the program.

 It analyzes the control flow graph of the program to find a set

of linearly independent paths of execution. Manually generating

test data to achieve maximum code coverage requires lot of

effort. At the same time it can also be error prone, tedious,

costly, and time consuming. So in this case Automated Test Data

Generation (ATDG) comes as a savior. Despite the importance

of ATDG, there is still a lot to achieve in this area especially for

AOP which is a new programming paradigm that is based on the

concepts of Object-Oriented Programming (OOP). AOP

implements cross-cutting requirements into units called Aspects.

Manuscript received February 20, 2015.
Juhi Khandelwal, Computer Science Department, Gautam Buddha

University, Greater Noida, India.
Pradeep Tomar, Computer Science Department, Gautam Buddha University,

Greater Noida, India .

Aspects encapsulate the functionality that cross-cuts and coexists

with other functionalities in a system. AspectJ is the widely

adopted AOP language. AspectJ is an extension to Java

language. This extension includes aspects, pointcuts, advice,

intertype declaration and jointpoints. Advice is a piece of code

that is executed after or before of a certain action e.g. exits of a

thread. Pointcuts are the point on which the cross cutting

concerns are executed. So, a combination of an Advice and the

Pointcut can be referred as Aspect.

This paper is organized as follows: Section 1 provides an

introduction, section 2 presents a survey of various research

papers on ATDG techniques and frameworks for AOP. Most of

these techniques have concentrated more on the aspectual

behavior of the AspectJ programs. Section 3 introduces an

process for test data generation for AOP using GA to achieve

path coverage. Section 4 presents the conclusion.

II. AUTOMATED TEST DATA GENERATION TECHNIQUES AND

FRAMEWORK

Software testing basically has three important steps: Designing

or generating the test data. Executing those test data and

analyzing the results as per the requirement [1].Test data

generation in software testing is the process to identify a set of

data which satisfies the given testing criterion [2]. In recent

years, there is an upsurge in automating the test data generation

process in order to reduce the cost and increase the quality of the

system. This section presents a related work on ATDG of AOP.

Mark Harman et al. [3] have presented an approach for ATDG

for AOP. This approach tries to achieve branch coverage and

automate test data generation by using Search Based

optimization technique i.e. evolutionary Testing. They have also

performed an empirical study to support the claim that search

based testing is effective for AOP. At the same time, they have

introduced AOP Input - Domain reduction techniques to improve

performance of ATDG. They have shown that evolutionary

testing is superior to random testing. Fig1 [3] provides an

overview of the process adopted for generation of test data.

They have used evolutionary testing to generate automated test

data that is able to achieve Branch coverage. They have done

empirical study of a suite of 14 AspectJ programs in order to

validate their work. Results were quite impressive and support

the fact that evolutionary testing achieve better branch coverage

than random testing and also require less effort.

While performing Domain Reduction they have achieved up to

100% domain reduction which represent there is no set of

relevant parameter. Even in this case evolutionary testing can be

used to identify relevant public fields. Their various empirical

study thus performed were in favor of their research. They have

only studied the branch coverage. They have identified the

Automated Test Data Generation Process Through Path Testing For Aspect Oriented Programming

235 www.erpublication.org

aspectual branch of the code and then identified the relevant

parameter so as to reduce the input domain. They have used

evolutionary testing to generate the test data so as to achieve

maximum branch coverage.

Fig1. ATDG using Evolutionary Testing

Anuranjan Misra et al. [4] have proposed a framework for

ATDG by using evolutionary testing. They have also performed

a comparison of evolutionary testing with random testing. Their

framework was based on OOP framework. In their work they

have concentrate on Aspectual Branches. They have used

AspectJ programs as the input, which was converted in to Java

programs.

They have provided an input domain reduction technique which

involves in simplifying the constraints and starts with smallest

domain of a variable to generate random inputs. Slicing was used

to remove the irrelevant parameters. They have used 10 AspectJ

programs to perform the empirical studies. In their empirical

study they were able to support the fact that evolutionary testing

is better than random testing in the terms of effort reduction and

test effectiveness.

Fig2. Test Data Generation Framework for Evolutionary Testing

Fig2 [4] shows a flow chart of the technique suggested. In this

chart An AspectJ code is first converted in to Java Code. In

order to support their work they have calculated an Aspectual

Branch coverage and effort. This work has supported the fact

that evolutionary testing is better than random testing. They have

used a basic technique of converting AOP to Java programs.

Then they have generated automated test data for the branch

coverage of the code and had adopted evolutionary testing.

According to Mourad Badri et al. [5] has suggested a unit testing

technique called AJunit for aspect oriented programs. AJunit

used dynamic behavior of classes and its related aspects as it is

base. It generates test sequences as well as verifies them. A Java

class can be related to one or more aspects, integrating one or

more aspects to a class is very problematic. It is necessary to

ensure that the original behaviors of classes are kept intact. In

Unified Modelling Language (UML) statechart diagrams are

prepared for the classes and their related aspects. In the next step

related aspects are integrated in an incremental way. Statechart

diagram generate the testing sequence which are further

extended according to the behavior of related aspects. This

extended chart is known as Extended StateChart (ESC) which

represents the dynamic behavior of the class. Now this ESC

model according to the testing criteria generates the testing

sequences.

AJunit also have an advantage of retesting the specific part that

has undergone some changes rather than retesting of the whole

module. This approach also reduces the complexity of conflicts

between aspects when they are integrated together. In this

approach they try to identify the sequence that must be followed

while testing. They have performed case studies in order to

provide the detail of their approach.

Their approach not only generates the test sequence that has to

be followed but it also supports its execution and verification. It

also helps in doing the retesting and regression testing. Test

cases are generated based on the testing sequence. Framework

suggests the sequence of testing for state based unit testing i.e. a

single aspect.

Tao Xie et al. [6] have presented a Wrasp framework for ATDG.

It generates test data for both integration and unit testing. In their

framework they generate a Wrapper class for the AspectJ

programs and try to use the existing tools that are used for Java

programs. Then these Wrapper classes are used for generation of

test data rather than the woven base class.

For generation of integration test data two steps are followed, in

the first step a wrapper class is generated for the base class and

in the next step wrapper class act as a class under test for test

generation techniques. For generation of Unit tests aspect classes

are compiled using AspectJ compiler and later on these compiled

classes are feed in to a test generation tool such as Parasoft Jtest

for generation of test data. Jtest generates test data for the public

methods.

Test generated through Parasoft doesn’t provide the meaningful

tests as the many features like aspect, advice are not covered in

this. Their approach first generates a wrapper class of the AOP to

address the weaving issues. Then generate test cases for this

wrapper class using test-generation tools for Java.

Annasaro et al. [7] have provided a technique that generates

sequence based test cases which are able to provide Optimum

Code Coverage (OCC). Their technique is able to generate event

based test cases by use of both Object Oriented and Aspect

Oriented. They have compared there result with their previous

work in which they have generated GUI based test cases. In their

work they have used object oriented testing and aspect oriented

testing to improve the code coverage.

In their approach they have firstly created the test cases based on

the object oriented paradigm and later on aspect oriented test

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-2, February 2015

236 www.erpublication.org

case generation is used. Algorithms are used for both the

processes. They have also used a pseudo code to calculate the

code coverage. They have provided the analytical result to

support their current work and have used the aspect and object

oriented approach to generate the test cases rather than

generating test cases for AOP. It takes account the interaction of

aspects and the central system and has tried to address the

mistake arise during the AOP testing. Their work has suggested

an event based test case generation with the help of object

oriented and aspect oriented event based test case generation.

Then had compare their result with GUI based test case

generation.

Reza Meimandi Parizi et al. [8] have suggested a framework that

performs random testing of AOP. According to them many work

that has proposed till now follows systematic testing of the AOP

that is Test data was generated for structural testing.

Randomness not only facilitates test generation but also

influence the execution of test cases. Aspect Oriented Software

Development (AOSD) contains some features and aspects that

cannot be test with the traditional methods. AOSD provides new

paradigm for software development by providing cross cutting

concerns but it need to find out the techniques to verify and

validate the software that uses AOSD approach.

Fig3: Overview of Random Testing approach.

For generating reliable data random testing is the only option.

Fig3 [9] represent the major five stages in their approach. Their

approach starts with identifying the Aspect Under Test (AUT)

and its specifications. They have used random testing to achieve

the OCC.

III. AUTOMATED TEST DATA GENERATION PROCESS

In recent year, several researches have been done in the area of

ATDG for AOP. All these approaches were for certain number

of AOP programs. Most of these approaches have converted

AOP programs to Java programs in order to use existing tools

and techniques. These approaches have mainly concentrate on

one perspective that is branch to achieve the maximum code

coverage for AOP. But path coverage is better than branch

coverage as it provide higher code coverage.

This paper proposed a technique for ATDG for AOP using GA

for Path testing. According to Jin-Cherng Lin et al. [9] GA are

able to search in a discontinuous space as well while searching

methods can only work for continuous functions. GA is able to

generate test data for discontinuous functions and most of the

programs are discontinuous in nature. Following is the approach

for the path testing of AOP using GA. In this the initial test cases

are generated randomly using some existing automation tool. For

implementing this approach, a fitness function is needed for

identifying the test case for next level generation of test cases.

1. Generate Control Flow Graph of the source code.

2. Select the target path for path coverage

3. Generate test cases

4. Execute test cases and identify the test case that covers

the target paths

5. If the target path is covered, output a successful

message and go to step 10.

6. If the target path is not covered, identify the test case

that survives the fitness function of GA.

7. Use that test case to generate next generation of test

cases and execute the test cases to identify the test case

that has covered the target path.

8. If the target path is covered and stop the GA identify

the test case that has covered the target path and go to

step 10.

9. After applying GA if the target path is not covered then

iteration limit exceeds and output is a failure message.

10. Exit.

GA algorithm is based on Darwin theory of Survival of the

fittest. It basically consists of 4 main stages: evaluation,

selection, crossover and mutation. GA requires fitness function

for selection of a single solution from a set of solutions. With the

help of GA the test cases which have lower possibility of

achieving the target path are discarded in the initial stages itself.

Thus it helps in optimizing the results at the initial levels itself.

Search based optimization techniques requires complex

computation on the other hand GA greatest merit is their

simplicity.

IV. CONCLUSION

This paper has reviewed the research papers on ATDG of AOP

and has found that most of the works concentrate on the branch

testing and search based algorithms. Search based algorithms

generate test data only for programs which are continuous in

nature. With the help of the literature review, this paper has

concluded that evolutionary testing is better than random testing

in all prospects. Researchers and practitioners have used some

set of already written AspectJ programs for ATDG. These

AspectJ programs were converted in to Java programs with the

Automated Test Data Generation Process Through Path Testing For Aspect Oriented Programming

237 www.erpublication.org

help of different techniques and have used some existing OOP

tools for implementation. This paper has proposed a process

using GA to generate the test data. GA is much simpler than

search based algorithms in terms of testing. GA may get trapped

in an infinite loop but the required path is already selected, so

chances of being trapped are very low. As the numbers of

iterations are also fixed, program will be executed in the limited

time frame.

REFERENCES

[1] Bogdan Korel, “Automated Software Test Data Generation”, IEEE

Transactions on Software Engineering, Vol.16. No.8, 1990.

[2] Hitesh Tahbildar and Bichitra Kalita, “Automated Software Test Data

Generation: Direction of Research”, International Journal of Computer
Science & Engineering Survey, Vol.2, No.1, 2011

[3] Mark Harman, Fayezin Islam, Tao Xie and Stefan Wappler, ”Automated

Test Data Generation for Aspect-Oriented Programs”, International

Conference on Aspect-Oriented Software Development,2009.

[4] Anuranjan Misra, Raghav Mehra, Mayank Singh, Jugnesh Kumar and
Shailendra Mishra, ”Novel Approach to Automated Test Data Generation

for AOP”, International Journal of Information and Education Technology,

Vol. 1, No. 2, 2011.
[5] Mourad Badri, Linda Badri and Maxime Bourque-Fortin,”Automated

State-Based Unit Testing for Aspect-Oriented Programs: A Supporting

Framework” ,Journal of Object technology Vol. 8, No. 3, 2009.
[6] T. Xie, J. Zhao, D. Marinov, and D. Notkin, ”Automated test generation for

AspectJ program”,

http://mir.cs.illinois.edu/marinov/publications/XieETAL05Wrasp.pdf
[7] Annasaro Vijendran and N.R.Suganya, “Generating Object-Oriented and

Aspect-Oriented Sequence based Test Cases with Optimum Code

Coverage”, International Journal of Computer Applications (0975 – 8887)
Volume 59, No.18, 2012.

[8] Reza Meimandi Parizi, Abdul Azim Abdul Ghani, Rusli Abdulla and

Rodziah Binti Atan, “Towards a Framework for Automated Random

Testing of Aspect-oriented Programs”, 18th International Conference on
Software Engineering and Data Engineering , 22-24, 2009.

[9] Jin-Cherng Lin and Pu-Lin Yeh, “Automated test data generation for path

testing using GA”, Information Sciences Journal 131, 47-64, 2001.

