

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 179 www.erpublication.org



Abstract— Design and optimized implementation of a 16-bit

1024-point FFT processor is presented in this paper. The system

architecture of a FFT core is based on a radix-4 algorithm. The

target FPGA is an XC3S500E Spartan-3E from Xilinx working

at clock frequency of 50MHz and fully tested by method of

co-simulation using Xilinx ISE 14.2 and tested on real hardware

using Spartan-3E starter kit.

Index Terms—DFT, DIF, Fast Fourier Transform (FFT),

Field Programmable Gate Array (FPGA), VHDL.

I. INTRODUCTION

The Fast Fourier Transform (FFT) is a conventional method

for an accelerated computation of the Discrete Fourier

Transform (DFT) [1], which has been used in many

applications such as spectrum estimation, fast convolution

and correlation, signal modulation, etc. Even though FFT

algorithmically improves computational efficiency,

additional hardware-based accelerators are used to further

accelerate the processing through parallel processing

techniques [2].

A large number of applications in signal processing and

modern communication system uses the Fast Fourier

transform (FFT) as one of its central blocks. Since the

appearance of the Cooley-Tukey fast algorithm[1], which

dramatically reduced the number of operations from to

N , several works have tried to accelerate the

computation speed in both hardware and software versions.

Hardware implementations have demonstrated to be very

efficient and faster than their software counterparts when

running at a given clock speed. This because having dedicated

hardware to perform the required operations allows for

completing calculation using a lower number of clock cycles.

Field programmable gate arrays (FPGA) have facilitated the

hardware implementation of FFTs allowing for scalable and

non-scalable designs. As FPGA technology evolves

increasing density and speed, it is expected to enable larger

and faster designs [3].

1024-point FFT computation is considered the main basic

algorithm for several DSP applications. Different FFT

algorithms have been proposed to exploit certain signal

properties to improve the trade-off between computation time

and hardware requirements. Radix-4 based algorithms

improve computation time in a factor of two, compared with

radix-2 based algorithms, increasing hardware requirements

by the same factor.

Considering that low-cost, high-density reconfigurable

devices are already available, an optimized

Manuscript received February 15, 2015.

Ram B. Alapure, Electronics & Telecommunication Dept., Government

College of Engineering, Aurangabad, India.

Kushal M. Ghadge, Electronics & Telecommunication Dept.,

Government College of Engineering, Aurangabad, India.

price/performance HDL core development of the 1024-point

radix-4 FFT is feasible [4, 5].

II. RADIX-4 FFT

The N-point discrete Fourier transform (DFT) is defined by

equation (1),

Where

The DFT calculation demands a complex implementation

(requires N
2
 complex multiplications and N(N-1) complex

additions), so we have to find a more efficient way to perform

this calculation. The FFT was proven to be a faster and more

efficient algorithm to compute Fourier transform. We use the

decimation in Frequency (DIF) radix-4, which is the most

used to calculate the FFT because of it’s reduce

computational complexity [4, 5].

The radix-4 DIF FFT divides an N-point discrete Fourier

transform (DFT) into four N/4-point DFTs, then into 16

N/16-point DFTs, and so on. In the radix-2 DIF FFT, the DFT

equation is expressed as the sum of two calculations. One

calculation sum for the first half and one calculation sum for

the second half of the input sequence [6]. Similarly, the

radix-4 DIF FFT expresses the DFT equation as four

summations, and then divides it into four equations, each of

which computes every fourth output sample.

X(4k), X(4k+1), X(4k+2), X(4k+3) are N/4-point DFTs.

Each of their N/4 points is a sum of four input samples x(n),

x , each multiplied by

either +1,-1,j or –j. The sum is multiplied by a twiddle factor

(. Figure 1.

Figure 1. Radix-4 DIF FFT Dragonfly.

The four N/4-point DFTs together make up an N-point

DFT. Each of these N/4-point DFTs is divided into four

N/16-point DFTs. Each N/16 DFT is further divided into four

FPGA Implementation of 1024-point Radix-4 FFT

core using Xilinx VHDL

Ram B. Alapure, Kushal M. Ghadge

FPGA Implementation of 1024-point Radix-4 FFT core using Xilinx VHDL

 180 www.erpublication.org

N/64-point DFTs, and so on, until the final decimation

produces four-point DFTs. The four-point DFT equation

makes up the dragonfly calculation of the radix-4 FFT.

When using Radix-4 decomposition, the N-point FFT

consists of stages, with each stage containing N/4

Radix-4 dragonflies. From the formulas we calculate the

1024-point FFT. That will be 5 stages where dragonflies will

run for the 1024-points.

Compared with the Radix-2 algorithm, we will get a more

complex algorithm but with less computational cost. For

1024-point sequence, Radix-2 would require 40960 additions

and 20480 multiplications whereas Radix-4 requires 30720

aditions and 5120 multiplications [5].

III. ARCHITECTURE

Figure 2. Block Diagram of System

The 1024-point FFT processes 1024 complex samples,

with 16-bit length. Those samples are store in the memory

RAM1, each one with a direction. The dragonfly takes 4

samples and operates, this process is repeated 256 times and

it’s stored in the memory RAM2. Then it replaces the RAM1

with the RAM2 information and process the dragonfly again.

This process is done 5 times in order to finish the calculations

of the Radix-4 FFT. We can see the flowchart in the Figure 3.

Input

Real & Imaginary

 MUX

 Output

Real & Imaginary

RAM1

Register

1024x16

RA

RD

RC

RB Radix-4

Dragonfly

RAF

RBF

RCF

RDF

RAM2

Register

1024x16

WRITE

ADD

ROM
Write Count

READ

ADD

ROM

Read Count

SIN & COS

ROM

Sin Count

1024 Count

Figure 3. Radix-4 DIF FFT flow chart

IV. FFT CORE

Figure 4. 1024-Point FFT core

The FFT core receives the input data in natural order, and it

generates the output in bitreversed order. Input data arrives at

clock rate. All the data needed to compute each FFT arrives as

a block. In order to ease the integration of the FFT a

validation signal, DATA IN VALID, will be set high during

the arrival of valid data at the input of the FFT core. Similarly,

when valid output data are ready at the output of the FFT core,

a validation signal DATA OUT VALID is set high.

The FFT processor employs fixed-point arithmetic. Input

and output data are represented using dbw bits. The twiddle

factors have been quantized with tbw bits. The core scales

data appropriately during internal operations to avoid

overflow.

The FFT Core computes a 1024-point complex forward

FFT. The input data is a vector of 1024 complex values

represented as 16-bit 2’s complement numbers – 16-bits each,

for the real and imaginary components of a data sample. The

1024 element complex output vector is also represented using

16 bits for each of the real and imaginary components of an

output sample. The FFT core is partitioned into three major

modules namely Memory section, Multiply and Accumulate,

and Control and Address Generator.

A. Memry section

The core has three memory areas – two 1024 x16 BRAMs

for storing the input samples, two 1024 x 16 BRAMs for

storing the output results and two 768 x 16 ROMs for storing

the Twiddle Factors.

B. Multiply and Accumulate Section

This is the heart of the FFT core as FFT basically involves

multiplication and adding. It also includes the pipelines

needed for the data to be properly present at the Multiplier

and adder inputs.

V. FPGA IMPLEMENTATION

In the first implementation of the FFT processor core in

VHDL some problems occurred due to the differences

between MATLAB and VHDL. One difference is caused by

the concurrency of VHDL simulations, which caused a

mismatch between data and control signals. There were three

possible solutions: insert delay elements in the data path,

change the control unit, or to insert asynchronous interfaces in

the problem areas. The first option is the easiest to implement,

but adds unnecessary hardware. The second is possible, but

 1024-Point FFT Core

clk

start busy

real_input (15:0) done

img_input (15:0) real_output (15:0)

mem_wr img_output (15:0)

mem_rd

reset

INPUT

 BRAM

1024X16

RADIX-4 FFT

COMPUTATION

OUTPUT

BRAM

CONTROL AND ADDRESS GENERATOR UNIT

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869, Volume-3, Issue-2, February 2015

 181 www.erpublication.org

could be hard to get correct. The last option is the most

efficient from design time point of view [8].

Xilinx hardware and software tools were used during the

design process. Xilinx ISE served as the VHDL modeling

environment and a Xilinx Spartan 3E starter kit used as the

target hardware. This specific board inlcudes an

XC3S500E-4FG320 FPGA.

All phase factors are stored in a ROM memory, whose

contents is initialized at the moment of downloading the

configuration file into the FPGA. The ROM, as well as the

RAM data memories (Mem1 and Mem2), were implemented

using pre-designed blocks available in the Xilinx Core

Generator tool. Nonetheless, this design is not limited to the

memory resources inside the FPGA. External memory can be

used for cases when small FPGAs with limited memory were

chosen, or when the core were part of a complete system and

chip resources were shared with other components.

The elemental fixed point operators in the design are also

Xilinx units. These were used as building blocks for the

complex operators needed to implement the radix-4 butterfly.

For the case of the complex multiplier, four real multipliers

and two adder/subtracter units were used to compute the

result. This block has the highest cost in terms of resource

consumption. In addition, the implementation needed

rounding to cast the output of each multiplier back to the input

precision. Truncation, although feasible, would cause a

greater error during the calculation. Rounding to the nearest

integer was used instead.

Using fixed point full-scale arithmetic implies that the word

length will be different at the input and output sides of the

core. The output width is dependent on the number of stages

(transform size) and can be calculated as:

output width = input width + num stages+ 1

The output width specifies the minimum requirement for

the data word width that can be used in the data memories [3].

VI. VALIDATION, TESTING AND RESULTS

A. Validation and Testing

The design validation was performed at two levels. The

first was focused on simulation and the second on

implementation. For both levels, input vectors were read from

a coe file and results written to another file which was

compared with the expected results. All input vectors and

expected results were generated with MATLAB. Results were

obtained with the FFT MATLAB command. For simulations,

a testbench read the input into the design and wrote the FFT

result to an output file to be later compared with the expected

results.

B. Results

The time-computation performance of the FFT is estimated

by the Xilinx ISE 14.2 for the FPGA Spartan-3E and gives the

result of clock period 6.3ns (frequency 158.73MHz).

The implementation reaches a very near result in compare

with the Xilinx FFT Core [9] and better result than other FFT

TABLE I. Used Resource Report

Utilization Xilinx

FFT Core

FFT Core[4] Case

study

Slice Registers 47% 93% 41%

Slice LUTs 43% 84% 62%

LUT-FF Pairs 9% 43% 9%

RAM/FIFO 16% 66% 66%

Average 38% 72% 45%

VII. CONCLUSION

The developed FFT core has a higher time-performance

than similar DSP and PC systems, and although it has lower

time-performance compared with the commercially available

core from Xilinx®, it has the advantage of using lower

resources making it feasible to be implemented in lower-cost

FPGA families like the Spartan-3E.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine

calculation of complex Fourier series,” Math. Comput., vol. 19, pp.

297-301, 1965.

[2] A. Suleiman; H. Saleh; A. Hussein; D. Akopian, “A family of scalable

FFT architectures and an implementation of 1024-point radix-2 FFT

for realtime communications”, In Proc. of IEEE Int. Conf. on

Computer Design, ICCD-2008. pp.321-327, Oct. 2008

[3] Agenor Polo, Manuel Jimenez, David Marquez and Domingo

Rodriguez, “An Address Generator Approach to the Hardware

Implementation of a Scalable Pease FFT Core”, Circuits and Systems

(MWSCAS), 2012 IEEE 55th International Midwest Symposium on

DOI: 10.1109/MWSCAS.2012.6292149 Publication Year: 2012,

Page(s): 832- 835.

[4] J. A. Vite-Frias, R. J. Romero Troncoso and A. Ordaz Moreno, "VHDL

Core for 1024-Point Radix-4 FFT Computation", IEEE International

Conference on Reconfigurable Computing and FPGAs.

[5] Adriana Bonilla R., Roberto J. Vega L., Karlo G. Lenzi and Luís G. P.

Meloni, “Design and Implementation of Fast Fourier Transform

Algorithm in FPGA”, XXX SIMPÓSIO BRASILEIRO DE

TELECOMUNICAÇÕES – SBrT’12, 13-16 DE SETEMBRO DE

2012, BRASÍLIA, DF

[6] A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing,

2nd Upper Saddle River, NJ: Prentice Hall, 1998.

[7] Vıctor Montano and Manuel Jimenez, “Design and Implementation of

a Scalable Floating-point FFT IP Core for Xilinx FPGAs”, In Proc. of

the 53rd IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS-2010), pp.533-536, Aug. 2010.

[8] Weidong Li, Jonas Carlsson, Jonas Claeson, and Lars Wanhammar, “

A GALS Based 16-Point Pipeline FFT Core” Proceeding in IEEE

NorChip Conf.

[9] Xilinx® LogiCORE IP, Fast Fourier Transform V7.1, Xilinx® 2011.

Ram B. Alapure (M.E. final year student), Electronics &

Telecommunication Dept.,Government College of Engineering,

Aurangabad, India,

Kushal M. Ghadge (M.E. final year student), Electronics &

Telecommunication Dept., Government College of Engineering,

Aurangabad, India,

