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 

Abstract— Design and optimized implementation of a 16-bit 

1024-point FFT processor is presented in this paper. The system 

architecture of a FFT core is based on a radix-4 algorithm. The 

target FPGA is an XC3S500E Spartan-3E from Xilinx working 

at clock frequency of 50MHz and fully tested by method of 

co-simulation using Xilinx ISE 14.2 and tested on real hardware 

using Spartan-3E starter kit. 

Index Terms—DFT, DIF, Fast Fourier Transform (FFT), 

Field Programmable Gate Array (FPGA), VHDL. 

I. INTRODUCTION  

The Fast Fourier Transform (FFT) is a conventional method 

for an accelerated computation of the Discrete Fourier 

Transform (DFT) [1], which has been used in many 

applications such as spectrum estimation, fast convolution 

and correlation, signal modulation, etc. Even though FFT 

algorithmically improves computational efficiency, 

additional hardware-based accelerators are used to further 

accelerate the processing through parallel processing 

techniques [2]. 

A large number of applications in signal processing and 

modern communication system uses the Fast Fourier 

transform (FFT) as one of its central blocks. Since the 

appearance of the Cooley-Tukey fast algorithm[1], which 

dramatically reduced the number of operations from  to 

N , several works have tried to accelerate the 

computation speed in both hardware and software versions. 

Hardware implementations have demonstrated to be very 

efficient and faster than their software counterparts when 

running at a given clock speed. This because having dedicated 

hardware to perform the required operations allows for 

completing calculation using a lower number of clock cycles. 

Field programmable gate arrays (FPGA) have facilitated the 

hardware implementation of FFTs allowing for scalable and 

non-scalable designs. As FPGA technology evolves 

increasing density and speed, it is expected to enable larger 

and faster designs [3]. 

1024-point FFT computation is considered the main basic 

algorithm for several DSP applications. Different FFT 

algorithms have been proposed to exploit certain signal 

properties to improve the trade-off between computation time 

and hardware requirements. Radix-4 based algorithms 

improve computation time in a factor of two, compared with  

radix-2 based algorithms, increasing hardware requirements 

by the same factor. 

Considering that low-cost, high-density reconfigurable 

devices are already available, an optimized 
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price/performance HDL core development of the 1024-point 

radix-4 FFT is feasible [4, 5]. 

II. RADIX-4 FFT 

The N-point discrete Fourier transform (DFT) is defined by 

equation (1), 

 

Where 

 

The DFT calculation demands a complex implementation 

(requires N
2
 complex multiplications and N(N-1) complex 

additions), so we have to find a more efficient way to perform 

this calculation. The FFT was proven to be a faster and more 

efficient algorithm to compute Fourier transform. We use the 

decimation in Frequency (DIF) radix-4, which is the most 

used to calculate the FFT because of it’s reduce 

computational complexity [4, 5]. 

The radix-4 DIF FFT divides an N-point discrete Fourier 

transform (DFT) into four N/4-point DFTs, then into 16 

N/16-point DFTs, and so on. In the radix-2 DIF FFT, the DFT 

equation is expressed as the sum of two calculations. One 

calculation sum for the first half and one calculation sum for 

the second half of the input sequence [6]. Similarly, the 

radix-4 DIF FFT expresses the DFT equation as four 

summations, and then divides it into four equations, each of 

which computes every fourth output sample. 

X(4k),  X(4k+1), X(4k+2), X(4k+3) are N/4-point DFTs. 

Each of their N/4 points is a sum of four input samples x(n), 

x , each multiplied by 

either +1,-1,j or –j. The sum is multiplied by a twiddle factor 

( .  Figure 1. 

 
Figure 1. Radix-4 DIF FFT Dragonfly. 

The four N/4-point DFTs together make up an N-point 

DFT. Each of these N/4-point DFTs is divided into four 

N/16-point DFTs. Each N/16 DFT is further divided into four 
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N/64-point DFTs, and so on, until the final decimation 

produces four-point DFTs. The four-point DFT equation 

makes up the dragonfly calculation of the radix-4 FFT. 

When using Radix-4 decomposition, the N-point FFT 

consists of  stages, with each stage containing N/4 

Radix-4 dragonflies. From the formulas we calculate the 

1024-point FFT. That will be 5 stages where dragonflies will 

run for the 1024-points.  

Compared with the Radix-2 algorithm, we will get a more 

complex algorithm but with less computational cost. For 

1024-point sequence, Radix-2 would require 40960 additions 

and 20480 multiplications whereas Radix-4 requires 30720 

aditions and 5120 multiplications [5]. 

III. ARCHITECTURE 

  

Figure 2. Block Diagram of System 

The 1024-point FFT processes 1024 complex samples, 

with 16-bit length. Those samples are store in the memory 

RAM1, each one with a direction. The dragonfly takes 4 

samples and operates, this process is repeated 256 times and 

it’s stored in the memory RAM2. Then it replaces the RAM1 

with the RAM2 information and process the dragonfly again. 

This process is done 5 times in order to finish the calculations 

of the Radix-4 FFT. We can see the flowchart in the Figure 3. 
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Figure 3. Radix-4 DIF FFT flow chart 

IV. FFT CORE 

 

 

 

 

 

 

 

 

Figure 4. 1024-Point FFT core   

The FFT core receives the input data in natural order, and it 

generates the output in bitreversed order. Input data arrives at 

clock rate. All the data needed to compute each FFT arrives as 

a block. In order to ease the integration of the FFT a 

validation signal, DATA IN VALID, will be set high during 

the arrival of valid data at the input of the FFT core. Similarly, 

when valid output data are ready at the output of the FFT core, 

a validation signal DATA OUT VALID is set high. 

The FFT processor employs fixed-point arithmetic. Input 

and output data are represented using dbw bits. The twiddle 

factors have been quantized with tbw bits. The core scales 

data appropriately during internal operations to avoid 

overflow. 

The FFT Core computes a 1024-point complex forward 

FFT. The input data is a vector of 1024 complex values 

represented as 16-bit 2’s complement numbers – 16-bits each, 

for the real and imaginary components of a data sample. The 

1024 element complex output vector is also represented using 

16 bits for each of the real and imaginary components of an 

output sample. The FFT core is partitioned into three major 

modules namely Memory section, Multiply and Accumulate, 

and Control and Address Generator. 

A. Memry section  

The core has three memory areas – two 1024 x16 BRAMs 

for storing the input samples, two 1024 x 16 BRAMs for 

storing the output results and two 768 x 16 ROMs for storing 

the Twiddle Factors. 

B. Multiply and Accumulate Section 

This is the heart of the FFT core as FFT basically involves 

multiplication and adding. It also includes the pipelines 

needed for the data to be properly present at the Multiplier 

and adder inputs. 

V. FPGA IMPLEMENTATION 

In the first implementation of the FFT processor core in 

VHDL some problems occurred due to the differences 

between MATLAB and VHDL. One difference is caused by 

the concurrency of VHDL simulations, which caused a 

mismatch between data and control signals. There were three 

possible solutions: insert delay elements in the data path, 

change the control unit, or to insert asynchronous interfaces in 

the problem areas. The first option is the easiest to implement, 

but adds unnecessary hardware. The second is possible, but 
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could be hard to get correct. The last option is the most 

efficient from design time point of view [8]. 

Xilinx hardware and software tools were used during the 

design process. Xilinx ISE served as the VHDL modeling 

environment and a Xilinx Spartan 3E starter kit used as the 

target hardware. This specific board inlcudes an 

XC3S500E-4FG320 FPGA. 

All phase factors are stored in a ROM memory, whose 

contents is initialized at the moment of downloading the 

configuration file into the FPGA. The ROM, as well as the 

RAM data memories (Mem1 and Mem2), were implemented 

using pre-designed blocks available in the Xilinx Core 

Generator tool. Nonetheless, this design is not limited to the 

memory resources inside the FPGA. External memory can be 

used for cases when small FPGAs with limited memory were 

chosen, or when the core were part of a complete system and 

chip resources were shared with other components. 

The elemental fixed point operators in the design are also 

Xilinx units. These were used as building blocks for the 

complex operators needed to implement the radix-4 butterfly. 

For the case of the complex multiplier, four real multipliers 

and two adder/subtracter units were used to compute the 

result. This block has the highest cost in terms of resource 

consumption. In addition, the implementation needed 

rounding to cast the output of each multiplier back to the input 

precision. Truncation, although feasible, would cause a 

greater error during the calculation. Rounding to the nearest 

integer was used instead. 

Using fixed point full-scale arithmetic implies that the word 

length will be different at the input and output sides of the 

core. The output width is dependent on the number of stages 

(transform size) and can be calculated as: 

output width = input width + num stages+ 1 

The output width specifies the minimum requirement for 

the data word width that can be used in the data memories [3]. 

VI. VALIDATION, TESTING AND RESULTS 

A. Validation and Testing 

The design validation was performed at two levels. The 

first was focused on simulation and the second on 

implementation. For both levels, input vectors were read from 

a coe file and results written to another file which was 

compared with the expected results. All input vectors and 

expected results were generated with MATLAB. Results were 

obtained with the FFT MATLAB command. For simulations, 

a testbench read the input into the design and wrote the FFT 

result to an output file to be later compared with the expected 

results. 

B. Results 

The time-computation performance of the FFT is estimated 

by the Xilinx ISE 14.2 for the FPGA Spartan-3E and gives the 

result of clock period 6.3ns (frequency 158.73MHz). 

The implementation reaches a very near result in compare 

with the Xilinx FFT Core [9] and better result than other FFT 

TABLE I. Used Resource Report 

Utilization Xilinx 

FFT Core 

FFT Core[4] Case 

study 

Slice Registers 47% 93% 41% 

Slice LUTs 43% 84% 62% 

LUT-FF Pairs 9% 43% 9% 

RAM/FIFO 16% 66% 66% 

Average 38% 72% 45% 

 

VII. CONCLUSION 

The developed FFT core has a higher time-performance 

than similar DSP and PC systems, and although it has lower 

time-performance compared with the commercially available 

core from Xilinx®, it has the advantage of using lower 

resources making it feasible to be implemented in lower-cost 

FPGA families like the Spartan-3E. 
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